화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.3, 565-569, May, 2011
Sorption of aqueous Pb2+ ion on synthetic manganese oxides-intercalated with exchangeable cations
E-mail:
This paper describes the preparation, characterization, and application of three different synthetic manganese oxides (K-MO, H-MO, and Mg-MO). K-MO was synthesized by the reduction of potassium permanganate in an aqueous acidic medium. H-MO was prepared by an ion exchange reaction of K-MO with H+, while Mg-MO was prepared by reaction of H-MO and an aqueous Mg2+ salt solution under reflux. The subsequent solid products were characterized by a chemical composition analysis, XRD, XPS, FT-IR, SEM, and BET measurements. XPS spectra revealed that only tetravalent manganese ions coordinated octahedrally with oxygens. XRD patterns showed that K-MO turned into a layer-structured material while Mg2+ ions were incorporated into the gallery space of the tunnel-structured Mg-MO. Each type ofmanganese oxide was used in a sorption study of aqueous Pb2+ at 25℃ . The sorption of Pb2+ ions by manganese oxide resulted in increases of the concentrations of pre-intercalated ions (potassium ions, protons, or magnesium ions) and Mn2+ ions. In spite of the smaller surface area and pore volume, K-MO showed greater sorption capacity for Pb2+ ions than that of Mg.MO under the present experimental conditions, thus suggesting that ion exchange is the main mechanism for the sorption of Pb2+ ions on manganese oxides. The results are anticipated to be applicable to the removal of heavy metal ions from wastewater and the prevention of migration of ions in landfill leachates.
  1. Clearfield A, Solvent Extr. Ion Exch., 18, 655 (2000)
  2. Clearfield A, Chem. Rev., 88, 125 (1988)
  3. Suib SL, Chem. Rev., 93, 803 (1993)
  4. Auerbach SM, Carrado KA, Dutta PK, Handbook of Layered Materials, Marcel Dekker, Inc., New York (2004)
  5. Post JE, Proc. Natl. Acad. Sci. USA., 96, 3447 (1999)
  6. Shen YF, Zerger RP, DeGuzman RN, Suib SL, McCurdy L, Potter DL, O’Yong CL, Science., 260, 511 (1993)
  7. Suib SL, J. Mater. Chem., 18, 1623 (2008)
  8. Post JE, Veblen DR, Am. Mineral., 75, 477 (1990)
  9. Feng Q, Yamasaki N, Yanagisawa K, Ooi K, J. Mater. Sci. Lett., 15(11), 963 (1996)
  10. Luo J, Suib SL, J. Phys. Chem. B, 101(49), 10403 (1997)
  11. Ching S, Petrovay DJ, Jorgensen ML, Suib SL, Inorg. Chem., 36(5), 883 (1997)
  12. Aronson BJ, Kinser AK, Passerini S, Smyrl WH, Stein A, Chem. Mater., 11, 949 (1999)
  13. Ching S, Landrigan JA, Jorgensen ML, Chem. Mater., 7, 1604 (1995)
  14. Jothiramalingam R, Viswanathan B, Varadarajan TK, Mater. Chem. Phys., 100(2-3), 257 (2006)
  15. Xia GG, Tong W, Tolentino EN, Duan NG, Brock SL, Wang JY, Suib SL, Chem. Mater., 13, 1585 (2001)
  16. Malinger KA, Laubernds K, Son YC, Suib SL, Chem. Mater., 16, 4296 (2004)
  17. Golden DC, Chen CC, Dixon JB, Clays Clay Miner., 35, 271 (1987)
  18. O’Young CL, Sawicki RA, US Patent No. 5,545,393 (1996)
  19. Shen X, Ding Y, Liu J, Laubernds K, Zerger RP, Polverejan M, Son YC, Aindow M, Suib SL, Chem. Mater., 16, 5327 (2004)
  20. Shen XF, Ding YS, Liu J, Cai J, Laubernds K, Zerger RP, Vasiliev A, Aindow M, Suib SL, Adv. Mater., 17(7), 805 (2005)
  21. Golden DC, Chen CC, Dixon JB, Science., 231, 717 (1986)
  22. Dyer A, Pillinger M, Newton J, Harjula R, Mo¨ ller T, Amin S, Chem. Mater., 12, 3798 (2000)
  23. Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy JH, Munichandraiah N, J. Phys. Chem. C., 113, 6303 (2009)
  24. Nesbitt HW, Banerjee D, Am. Mineral., 83, 305 (1998)
  25. Johnson EA, POST JE, Am. Mineral., 91, 609 (2006)
  26. Cai J, Liu J, Suib SL, Chem. Mater., 14, 2071 (2002)
  27. Yang DS, Wang MK, Clays Clay Miner., 50, 63 (2002)
  28. Aualiitia TU, Pickering WE, Talanta., 34, 231 (1987)
  29. Kang KC, Kim SS, Choi JW, Kwon SH, J. Ind. Eng. Chem., 14(1), 131 (2008)
  30. O’Reilly SE, Hochella MFJ, Geochim. Cosmochim. Acta., 67, 4471 (2003)