화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.3, 439-444, May, 2011
Ce0.8Gd0.2O2 modification on La0.6Sr0.4Co0.2Fe0.8O3 cathode for improving a cell performance in intermediate temperature solid oxide fuel cells
E-mail:
To increase the cell performance of solid oxide fuel cells operated at intermediate temperature (600- 800℃ ), Ce0.8Gd0.2O2 (GDC) was applied to the La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode in electrode microstructure using sol-gel coating. We employed a GDC as a diffusion barrier layer on the yttriastabilized zironia (YSZ) electrolyte to prevent the interlayer formation of SrZrO3, which has poor ionic conductivity. This interfacial reaction product was hardly formed at the electrolyte-cathode interlayer after sintering the GDC layer resulting to reduce the cathode polarization resistance. Moreover, we use sol-gel method to coat GDC thin layer through the cathode pore wall surface to extend the triple phase boundary (TPB) area. The cathode polarization resistance also reduced due to the additional TPB area. For the single cell featuring LSCF cathode modified with GDC sol-gel coating, the maximum densities were 0.41 W/cm2 and 0.89 W/cm2 at 700 ℃ and 800 ℃.
  1. Williams MC, Electrochem. Soc. Proc. Ser., 16, 3 (2001)
  2. Mizuski J, Tagawa H, Tsuneyoshi K, Sawata A, Katou M, Hirano K, Denki Kagaku., 58, 520 (1990)
  3. Milliken C, Guruswamy S, Khandkar A, J. Electrochem. Soc., 146(3), 872 (1999)
  4. Desouza S, Visco SJ, Dejonghe LC, Solid State Ion., 98(1-2), 57 (1997)
  5. Steele BCH, Heinzel A, Nature., 414, 345 (2001)
  6. Huang K, Feng M, Goodenough JB, J. Am. Ceram. Soc., 81, 357 (1998)
  7. Tsai T, Barnett SA, J. Electrochem. Soc., 142(9), 3084 (1995)
  8. Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ, J. Electrochem. Soc., 143(9), 2722 (1996)
  9. Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O, J. Electrochem. Soc., 134, 2656 (1987)
  10. Teraoka Y, Zhang HM, Furukawa S, Yamazoe N, Chem. Lett., 1743 (1985)
  11. Li B, Wei X, Pan W, Int. J. Hydrogen Energy., 35, 3018 (2010)
  12. Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR, Solid State Ion., 76(3-4), 259 (1995)
  13. Sekido S, Solid State Ionics., 37, 253 (1990)
  14. Haanappel VAC, Mai A, Mertens J, Solid State Ion., 177(19-25), 2033 (2006)
  15. Kim WH, Song HS, Moon J, Lee HW, Solid State Ion., 177(35-36), 3211 (2006)
  16. Minh NQ, J. Am. Ceram. Soc., 76, 563 (1993)
  17. Lee HY, Cho WS, Oh SM, Bull. Korean Chem. Soc., 19, 661 (1998)
  18. Wang DY, Park DS, Griffith J, Nowick AS, Solid State Ionics., 2, 95 (1981)
  19. Tuller HL, Nowick AS, J. Electrochem. Soc., 122, 255 (1975)
  20. Wang DY, Nowick AS, J. Solid State Chem., 35, 325 (1980)
  21. Yahiro H, Eguchi Y, Eguchi K, Arai H, J. Appl. Electrochem., 18, 527 (1988)
  22. Kudo T, Obayashi H, J. Electrochem. Soc., 122, 142 (1975)
  23. Chang SH, Yo CH, Choi JS, Pyon MS, J. Korean Chem. Soc., 30, 33 (1986)
  24. Yun JW, Yoon SP, Park S, Han J, Nam SW, Lim TH, Kim JS, Int. J. Hydrogen Energy., 34, 9213 (2009)
  25. Kudo T, Obayashi H, Gejo T, J. Electrochem. Soc., 122, 159 (1975)
  26. Nivot C, Legros C, Lesage B, Kilo M, Argirusis C, Solid State Ion., 180(17-19), 1040 (2009)