화학공학소재연구정보센터
Transport in Porous Media, Vol.85, No.1, 143-155, 2010
Forced Convection Flow of Power-Law Fluids Over a Flat Plate Embedded in a Darcy-Brinkman Porous Medium
The steady forced convection flow of a power-law fluid over a horizontal plate embedded in a saturated Darcy-Brinkman porous medium is considered. The flow is driven by a constant pressure gradient. In addition to the convective inertia, also the "porous Forchheimer inertia" effects are taken into account. The pertinent boundary value problem is investigated analytically, as well as numerically by a finite difference method. It is found that far away from the leading edge, the velocity boundary layer always approaches an asymptotic state with identically vanishing transverse component. This holds for pseudoplastic (0 < n < 1), Newtonian (n = 1), and dilatant (n > 1) fluids as well. The asymptotic solution is given for several particular values of the power-law index n in an exact analytical form. The main flow characteristics of physical and engineering interest are discussed in the paper in some detail.