Transport in Porous Media, Vol.80, No.2, 373-387, 2009
Analytical Solution for Multi-Species Contaminant Transport Subject to Sequential First-Order Decay Reactions in Finite Media
Transport equations governing the movement of multiple solutes undergoing sequential first-order decay reactions have relevance in analyzing a variety of subsurface contaminant transport problems. In this study, a one-dimensional analytical solution for multi-species transport is obtained for finite porous media and constant boundary conditions. The solution permits different retardation factors for the various species. The solution procedure involves a classic algebraic substitution that transforms the advection-dispersion partial differential equation for each species into an equation that is purely diffusive. The new system of partial differential equations is solved analytically using the Classic Integral Transform Technique (CITT). Results for a classic test case involving a three-species nitrification chain are shown to agree with previously reported literature values. Because the new solution was obtained for a finite domain, it should be especially useful for testing numerical solution procedures.