화학공학소재연구정보센터
Transport in Porous Media, Vol.43, No.2, 239-263, 2001
A mathematical model for hysteretic two-phase flow in porous media
We develop a mathematical model for hysteretic two-phase flow (of oil and water) in waterwet porous media. To account for relative permeability hysteresis, an irreversible trapping-coalescence process is described. According to this process, oil ganglia are created (during imbibition) and released (during drainage) at different rates, leading to history-dependent saturations of trapped and connected oil. As a result, the relative permeability to oil, modelled as a unique function of the connected oil saturation, is subject to saturation history. A saturation history is reflected by history parameters, that is by both the saturation state (of connected and trapped oil) at the most recent flow reversal and the most recent water saturation at which the flow was a primary drainage. Disregarding capillary diffusion, the flow is described by a hyperbolic equation with the connected oil saturation as unknown. This equation contains functional relationships which depend on the flow mode (drainage or imbibition) and the history parameters. The solution consists of continuous waves (expansion waves and constant states), shock waves (possibly connecting different modes) and stationary discontinuities (connecting different saturation histories). The entropy condition for travelling waves is generalized to include admissible shock waves which coincide with flow reversals. It turns out that saturation history generally has a strong influence on both the type and the speed of the waves from which the solution is constructed.