Polymer, Vol.52, No.4, 1045-1054, 2011
Synthesis and characterization of CdS quantum dots with carboxylic-functionalized poly (vinyl alcohol) for bioconjugation
In the present research it is reported the synthesis and characterization of CdS nanoparticles (NPs) prepared using carboxylic-functionalized poly (vinyl alcohol) (PVA) as the ligand via aqueous route at room temperature and ambient pressure. Different molar concentrations of carboxylic-PVA and PVA were investigated aiming at producing stable colloidal systems. Carboxylic-PVA was conjugated with BSA (bovine serum albumin) and used as capping ligand in the preparation of CdS nanocrystals. UV-visible spectroscopy, photoluminescence spectroscopy, and transmission electron microscopy were used to characterize the kinetics and the relative stability of polymer-capped CdS nanocrystals. The results have clearly indicated that the carboxylic-functionalized PVA was much more effective on nucleating and stabilizing colloidal CdS nanoparticles in aqueous suspensions compared to PVA. In addition, the CdS nanocrystals were obtained in the so-called "quantum-size confinement regime", with the calculated average size below 4.0 nm and fluorescent activity. Thus, a novel simple route was successfully developed for synthesizing nanohybrids based on quantum dots and water-soluble chemically functionalized polymers with incorporated carboxylic moiety with the possibility of direct bioconjugation. (C) 2011 Elsevier Ltd. All rights reserved.