화학공학소재연구정보센터
Polymer, Vol.51, No.23, 5539-5549, 2010
Role of boric acid for a poly (vinyl alcohol) film as a cross-linking agent: Melting behaviors of the films with boric acid
We have investigated the role of boric acid as a cross-linking agent for a poly (vinyl alcohol) (PVA) film when the film is immersed in boric acid aqueous solution. DSC results show that the films with boric acid exhibit the higher glass transition temperatures than that of the PVA film without boric acid, when the films are dried after immersing in boric acid aqueous solutions with various boric acid concentrations, implying that boric acid penetrating into the films slows down the PVA molecular motion. Furthermore, simultaneous small-angle X-ray scattering and wide-angle X-ray diffraction measurements were performed on the melting processes of the PVA films with boric acid. We found that the crystallite size increase originated from melting and recrystallization do not occur for the PVA films with boric acid, whereas in the case of the PVA without boric acid the crystallite size is enlarged in both directions parallel and perpendicular to the chain axis via melting and recrystallization on melting. These indicate that chemical reactions of boric acid to the PVA molecular chains in amorphous regions resulted in cross-linking points take place in boric acid aqueous solutions, inhibiting recrystallization on melting, because the cross-links slow down the PVA molecular motion and must not be included in the crystalline domains. (C) 2010 Elsevier Ltd. All rights reserved.