Journal of Vacuum Science & Technology A, Vol.28, No.4, 774-778, 2010
Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate
This study investigated the microstructure and properties of nanocrystalline TiZrN films on AISI 304 stainless steel substrate. TiZrN films were prepared by reactive magnetron sputtering based on the previous optimum coating conditions (substrate temperature, system pressure, nitrogen flow, etc.) for TiN and ZrN thin films. The composition ratio of TiZrN coatings were adjusted by changing the Zr target power, while keeping the Ti target power constant. Experiments were conduced to find the optimum composition with desired properties. The ratio of TiZrN composition was analyzed by x-ray photoelectron spectroscopy and Rutherford backscattering spectrometer. In terms of phase formation, there were two types of coatings that were considered: single-phase solid solutions of TiZrN and interlacing nuclei of TiZr in the matrix of TiZrN. The thickness of all TiZrN films as measured by the secondary ion mass spectroscopy was about 500 nm, and the composition depth profiles indicated that the compositions in the TiZrN films were uniform from the film surface to the 304 stainless steel substrate. The crystal structure of the TiZrN films was determined by x-ray diffraction using a M18XHF-SRA diffractometer with Cu K-alpha radiation. A diffraction peak of TiZrN (002) was observed between that of TiN (002) and ZrN (002); similarly, a diffraction peak of TiZrN (111) was observed between that of TiN(111) and ZrN(111), respectively. The corrosion resistance of the TiZrN film deposited on the 304 stainless steel has been investigated by electrochemical measurement. The electrolyte, 0.5M H2SO4 containing 0.05M KSCN, was used for the potentiodynamic polarization. The potentiodynamic scan was conducted from 800 to 800 mV standard calomel electrode (SCE). (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3305963]