화학공학소재연구정보센터
Clean Technology, Vol.16, No.4, 292-296, December, 2010
황화납/산화아연 나노선을 이용한 양자점 감응형 태양전지
Quantum Dot Sensitized Solar Cell Using PbS/ZnO Nanowires
E-mail:
초록
황화납(PbS)을 감응물질로 하는 양자점 감응형 태양전지를 제작하고 효율을 측정해 보았다. 기판에 산화아연(ZnO) 나노선을 기른 후 SIIAR(Successive ionic layer adsorption and reaction)법으로 PbS 양자점을 합성하고 이를 주사전자현미경 (SEM),X-선 회절(XRD)을 통해 확인하였다. SILAR를 통해서 형성된 나노이종구조는 PbS 나노업자틀이 ZnO 나노선 위에 균일하게 성장한 것을 확인할 수 있었다. 본 실험에서 PbS을 이용한 양자점 감응형 태양전지의 최고 효율은 one sun에서 0.075%로 나타났으며, 이는 기존의 다른 감응 물질에 비해 비교적 낮은 효율을 나타내었다. 이러한 요인으로는 i) ZnO와 PbS의 밴드캡 배열이 Type-I 형을 이룰 수 있는 가능성,ii) 다양한 크기의 밴드캡을 가지는 PbS에 의한 전자이동 방해 효과, iii) 전해질에 의한 PbS의 안정성 저하 등의 이유를 생각해 볼 수 있으며,이를 해결하기 위해서는 PbS의 크기분포 조절과 새로운 전해질에 대한 연구가 향후 필요할 것으로 생각된다.
We fabricated quantum dot sensitized solar cells(QDSSC) using PbS as a sensitizer and measured the solar energy conversion efficiency. After growing ZnO nanowires on the substrate by low temperature ammonia solution reaction, PbS QDs were deposited on ZnO nanowires by SILAR(Successive ionic layer adsorption and reaction) method. The morphology and crystallinity ofPbS/ZnO nanowires were studied by SEM and XRD. In this study, the maximum conversion efficiency ofQDSSC using PbS was 0.075% at one sun, which was lower than that ofQDSSC using other sensitizers. The reasons it showed relatively low efficiency are i) the probability of type-I band gap arrangement between ZnO and PbS, ii) disturbance of electron migration by the various-sized PbS band gap, iii) stability dip by the chemical reaction of PbS QDs with electrolyte. To solve these problems, researches about controlling the size distribution of PbS and new type electrolyte would be needed.
  1. Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM, J. Am. Chem. Soc., 130(4), 1124 (2008)
  2. Lee HJ, Yum JH, Leventis HC, Zakeeruddin SM, Haque SA, Chen P, Seok SI, Gratzel M, Nazeeruddin MK, J. Phys. Chem. C., 112(30), 11600 (2008)
  3. Lee HJ, Chen P, Moon SJ, Sauvage F, Sivula K, Bessho T, Gamelin DR, Comte P, Zakeeruddin SM, Il Seok S, Gratzel M, Nazeeruddin MK, Langmuir, 25(13), 7602 (2009)
  4. Zaban A, Micic OI, Gregg BA, Nozik AJ, Langmuir, 14(12), 3153 (1998)
  5. Tak Y, Yong KJ, J. Phys. Chem. B, 109(41), 19263 (2005)
  6. Tak Y, Hong SJ, Lee JS, Yong K, Cryst. Growth Des., 9(6), 2627 (2009)
  7. Shalom M, Dor S, Ruhle S, Grinis L, Zaban A, J. Phys. Chem. C., 113(9), 3895 (2009)