화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.3, 342-347, June, 2011
상용화제의 첨가에 따른 PP/PCL 블렌드와 TPO/PCL 블렌드의 기계적 물성 모폴로지 및 유변학적 물성
Effect of Compatibilizers on the Morphological, Mechanical and Rheological Properties of PP/ PCL and TPO/PCL Blends
E-mail:
초록
본 연구에서는 폴리프로필렌(PP)과 올레핀계 열가소성 엘라스토머(TPO)를 생분해성 고분자인 폴리카프로락톤(PCL)과 각각 블렌드할 경우 상용화제의 효과에 대하여 연구하였다. 본 연구에 사용한 TPO는 PP(80 wt%), EPDM(15 wt%) 그리고 Talc(5 wt%) 로 구성된 혼합체이며, 상용화제로는 maleic anhydride grafted polypropylene(PP-g-MAH)와 maleic anhydride grafted styrene-(ethylene-co-butene)-styrene copolymer(SEBS-g-MAH)를 사용하였다. PP/PCL 그리고 TPO/PCL 각각의 블 렌드에서, PP-g-MAH 를 상용화제로 첨가한 경우 인장강도가 향상되는 것을 알 수 있었으며, 충격강도의 경우에는 rubber를 포함하고 있는 SEBS-g-MAH를 상용화제로 사용하였을 때 향상되는 것을 알 수 있었다. PP/PCL 블렌드에 PP-g-MAH 상용화제를 첨가한 결과 PCL의 droplet 크기가 감소하는 것을 알 수 있었다. 또한 유변물성 측정결과 상용화제 첨가에 따라 각각 블렌드에서 복합점도 변화가 작음을 알 수 있었는데 이것은 상용화제가 블렌드의 상용성 변화에 미치는 영향이 작아 용융점도에 미치는 영향이 미미하기 때문으로 사료된다. 요약하면, 블렌드의 기계적 물성, 모폴로지 및 유변학적 물성 측정 결과 PP/PCL과 TPO/PCL 각각의 블렌드에서 PP-g-MAH 상용화제는 PCL droplet 크기를 감소시켜 인장강도를 향상시키는 역할을 하였으며, SEBS-g-MAH 는 충격강도를 향상시키는 보강제로서의 역할을 하는 것을 알 수 있었다.
The effects of compatibilizers on the mechanical and rheological properties of PP/PCL and TPO/PCL blends have been studied. The thermoplastic polyolefin (TPO) consists of PP (80 wt%), EPDM (15 wt%) and Talc (5 wt%). Maleic anhydride grafted polypropylene (PP-g-MAH) and maleic anhydride grafted styrene-(ethylene-co-butene)-styrene copolymer (SEBS-g-MAH) were used as compatibilizers. In mechanical properties of PP/PCL and TPO/PCL blends, tensile strength was increased when PP-g-MAH was used as a compatibilizer, and impact strength was increased when SEBS-g-MAH was used as a compatibilizer. From the results of SEM morphology of PP/PCL blend, PCL droplet size was decreased by the addition of PP-g-MAH. From the results of rheological property, complex viscosity of the PP/ PCL and TPO/PCL blends did not change appreciably when the compatibilizers were added. From the results of mechanical, morphological and rheological properties of the blends, PP-g-MAH acted as a compatibilizer to increase the tensile strength of the PP/PCL and TPO/PCL blends. While SEBS-g-MAH acted as a impact modifier to increase the impact strength of the PP/PCL and TPO/PCL blends.
  1. Scott G, Wiles DM, Biomacromolecules, “Programmed-Life Plastics from Polyolefins: A New Look at Sustainability", 2(3), 615 (2001)
  2. Lee MJ, Lee MC, Shin PK, Polym.(Korea), “The Properties and Biodegradability of PCL/PLA Blends", 22(1), 93 (1998)
  3. Chun YS, Kyung YJ, Jung HC, Kim WN, Polymer, “Thermal and Rheological Properties of Poly(ε-caprolactone) and Polystyrene Blends", 41(24), 8729 (2000)
  4. Reddy N, Nama D, Yang Y, Polym.Degrad. Stab., “Polylactic Acid/polypropylene Polyblend Fibers for Better Resistance to Degradation", 93, 233 (2008)
  5. Li Y, Shimizu H, Europ. Polym. J., “Improvement in Toughness of Poly(Llactide)(PLLA) Through Reactive Blending with Acrylonitrile PLLA) Through Reactive Blending with Acrylonitrilebutadiene-styrene Copolymer(ABS): Morphology and Properties”, 45, 738 (2009)
  6. Wei GX, Sue HJ, J. Appl. Polym. Sci., “Fracture Mechanisms in Preformed Polyphenylene Oxide Particle-Modified Bismaleimide Resins", 74(10), 2539 (1999)
  7. Liang JZ, Li RKY, J. Appl. Polym. Sci., “Rubber Toughening in Polypropylene: A Review", 77(2), 409 (2000)
  8. Kim WS, Kim IH, Ha K, Seo HJ, Kang SC, J. Korean Ind. Eng. Chem., “Mechanical Properties, Thermal Stability and Biodegradability of Poly(ε-caprolactone) (PCL)/Poly (vinyl chloride) (PVC) Blends", 13(8), 759 (2002)
  9. Cho K, Lee J, Xing PX, J. Appl. Polym. Sci., “Enzymatic Degradation of Blends of Poly(ε-caprolactone) and Poly(styrene-co-acrylonitrile) by Pseudomonas Lipase", 83(4), 868 (2002)
  10. Matzinos P, Tserki V, Gianikouris C, Pavlidou E, Panayiotou C, Europ. Polym. J., “Processing and characterization of LDPE/starch/PCL blends", 38, 1713 (2002)
  11. Rosa DS, Neto IC, Calil MR, Pedrodo AG, Fonseca CP, Neves S, J. Appl. Polym. Sci., “Evaluation of the Thermal and Mechanical Properties of Poly(ε-caprolactone), Low-Density Polyethylene, and Their Blends", 91, 3909 (2004)
  12. Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN, Macromol. Res., “Effects of Compatibilizers on the Mechannical Properties and Interfacial Tension of Polypropylene and Poly(lactic acid) Blends", 18(6), 583 (2010)
  13. Singh G, Bhunia H, Rajor A, Jana RN, Choudhary V, J. Appl. Polym. Sci., “Mechanical Properties and Morphology of Polylactide, Linear Low-Density Polyethylene, and Their Blends", 118(1), 496 (2010)
  14. Kotiba H, Mosab K, Fawaz D, Polym. Bull., “Rheological and Mechanical Properties of Poly(lactic acid)/polystyrene Polymer Blend", 65, 509 (2010)
  15. Ho CH, Wang CH, Lin CI, Lee YD, Polymer, “Synthesis and Characterization of TPO-PLA Copolymer and Its Behavior as Compatibilizer for PLA/TPO Blends", 49(18), 3902 (2008)
  16. Alain B, Sylvie P, Composites.: Part A., “Investigations on Mechanical Properties of Poly(propylene) and Poly(lactic acid) Reinforced by Miscanthus Fibers", 39, 1444 (2008)
  17. Bledzki AK, Jaszkiewicz A, Compos. Sci. Technol., “Mechanical Performance of Biocompositess Based on PLA and PHBV Reinforced with Natural Fibres-A Comparative Study to PP", 70, 1687 (2010)