화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.3, 210-215, May, 2011
천연 항균물질 루틴을 함유하는 PHBV 나노섬유의 제조 및 생체적합성
Fabrication and Biocompatibility of Rutin-containing PHBV Nanofibrous Scaffolds
E-mail:
초록
루틴은 항발암, 소염제, 항바이러스성 기능을 갖는 물질이다. 미생물이 만들어낸 폴리에스테르인 PHBV와 루틴을 전기방사하여 나노섬유 부직포를 얻었다. 나노섬유 부직포의 항균성은 황색포도상구균 (Staphylococcus aureus), 폐렴간균(Klebsiella pneumoniae)을 사용하여 평가하였고, KB 셀을 이용하여 세포독성을 평가하였다. 그 결과 루틴을 3wt% 함유할 때 지지체는 우수한 항균성을 보였으며, KB 셀을 이용한 실험결과로부터 루틴을 함유하는 PHBV 지지체는 세포독성을 나타내지 않음을 알 수 있었다.
Rutin(R) exhibits a wide range of biological activities including anticarcinogenic, antiinflammatory and antiviral actions. The purpose of this study is to investigate the effect of rutin concentrations (1 and 3 wt%) on the antibacterial activity of poly(3-hydroxybutylate-co-hydroxyvalerate)(PHBV) scaffolds. Antibacterial activity was evaluated by using Staphylococcus aureus and Klebsiella pneumoniae. Furthermore, the qualitative ongrowth of human KB endothelial cells was done to study in vitro cytotoxicity of the scaffolds. As the results, PHBV scaffolds containing 3 wt% rutin completely inhibited the proliferation of Staphylococcus aureus and Klebsiella pneumoniae. In addition, the PHBV/R scaffolds used in this study did not show any cytotoxicity when evaluated them with KB endothelial cells.
  1. Abu Bakar MF, Mohamed M, Rahmat A, Fry J, Food Chem., 113, 479 (2009)
  2. Kreft I, Fabjan N, Germ M, Fagopyrum., 20, 7 (2003)
  3. Wagner C, Fachinetto R, Corte CL, Brito VB, Severo D, Dias GDOC, Morel AF, Nogueira CW, Rocha JBT, Brain Res., 1107, 192 (2006)
  4. Yang J, Guo J, Yuan J, LWT-Food Science and Technology., 41, 1060 (2008)
  5. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH, Biomaterials., 25, 131 (2004)
  6. Ginaalska G, Kowalczuk D, Osinka M, Intern. J. Pharm., 288, 131 (2008)
  7. Pouton CW, Akhtar S, Adv. Drug Deliever. Rev., 18, 133 (1996)
  8. Kose GT, Kenar H, Hasırcı H, Hasırcı V, Biomaterials., 24, 1949 (2003)
  9. Williams SF, Martin DP, Horowiz DM, Peoples OP, Int. J. Biol. Macromol., 25, 111 (1999)
  10. Hocking PJ, Marchessault RH, Chemistry and Technology of Biodegradable Polymers, Blackie Academic and Professional, New York (1994)
  11. Guan HY, Shao CL, Wen SB, Chen B, Gong J, Yang XH, Mater. Chem. Phys., 82(3), 1002 (2003)
  12. Yoshimoto H, Shin YM, Terai H, Vacanti JP, Biomaterials., 24, 2077 (2003)
  13. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X, J. Control. Release., 92, 227 (2003)
  14. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S, Compos. Sci. Technol., 63, 2223 (2003)
  15. Xing ZC, Chae WP, Baek JY, Choi MJ, Jung Y, Kang IK, Biomacromolecules, 11(5), 1248 (2010)
  16. Kim HM, Chae WP, Chang KW, Chun SS, Kim SY, Jeong YS, Kang IK, J. Biomed. Mater. Res., 94, 380 (2010)
  17. Xing ZC, Chae WP, Huh MW, Park LS, Park SY, Kwak G, Yoon KB, Kang IK, J. Nanosci. Nanotechnol., 11, 61 (2011)
  18. Huang L, McMillan RA, Apkarian RP, Pourdeyhimi B, Conticello VP, Chaikof EL, Macromolecules, 33(8), 2989 (2000)
  19. Caruso RA, Schattka JH, Greiner A, Adv. Mater., 13(20), 1577 (2001)
  20. Chen ZH, Foster MD, Zhou WS, Fong H, Reneker DH, Resendes R, Manners I, Macromolecules, 34(18), 6156 (2001)
  21. Li WJ, Laurencin T, Caterson EJ, Tuan RS, Ko FK, J. Biomed. Mater. Res., 60, 613 (2002)
  22. Arima H, Ashida H, Danno GI, Biosci. Biotechnol. Biochem., 66, 1009 (2002)
  23. Alia M, Mateos R, Ramos S, Lecumberri E, Bravo L, Goya L, Eur. J. Nutr., 45, 19 (2006)
  24. Hoshiba T, Wakejima M, Cho CS, Shiota G, Akaike T, J. Biomed. Mater. Res. A., 85, 228 (2008)
  25. Akaike T, Tobe S, Kobayashi A, Goto M, Kobayashi K, Gastroenterol. Jpn., 28, 45 (1993)