Journal of Physical Chemistry A, Vol.114, No.26, 6935-6943, 2010
Electronic Structure and Spectroscopy of Oxyallyl: A Theoretical Study
Electronic structure of the oxyallyl diradical and the anion is investigated using high-level ab initio methods. Converged theoretical estimates of the energy differences between low-lying electronic states of oxyallyl (OXA) as well as detachment energies of the anion are reported. Our best estimates of the adiabatic energy differences between the anion (2)A(2) and the neutral B-3(2) and B-3(1) states are 1.94 and 2.73 eV, respectively. The (1)A(1) state lies above B-3(2) vertically, but geometric relaxation brings it below the triplet. The two-dimensional scan of the singlet (1)A(1) potential energy surface (PES) reveals that there is no minimum corresponding to a singlet diradical structure. Thus, singlet OXA undergoes prompt barrierless ring closure. However, a flat shape of the PIES results in the resonance trapping in the Franck-Condon region, giving rise to the experimentally observable features in the photoelectron spectrum. By performing reduced-dimensionality wave packet calculations, we estimated that the wave packet lingers in the Franck-Condon region for about 170 fs, which corresponds to the spectral line broadening of about 200 cm(-1). We also present calculations of the photodetachment spectrum and compare it with experimental data. Our calculations lend strong support to the assignment of the photoelectron spectrum of the OXA anion reported in lchino et al. (Angew. Chem., Int. Ed. Engl. 2009, 48, 8509).