Langmuir, Vol.27, No.9, 5433-5444, 2011
Variations in the Condensing Effect of Cholesterol on Saturated versus Unsaturated Phosphatidylcholines at Low and High Sterol Concentration
In this work, we have investigated the condensing and ordering effect induced by cholesterol on phosphatidylcholines (PCs). To perform the studies systematically, for the experiments we have selected phospholipids differing only in the number of cis monounsaturated chains (1,2-distearoyl-sn-glycero-3-phosphocholine - DSPC, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine - SOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC) or in the length (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine - POPC vs SOPC) of sn-1 acyl chain. Because the cholesterol concentration in mammalian membranes can be as high as 70 mol % of total lipids, the investigations were performed in a wide range of the sterol content. The results of the Langmuir monolayer experiments evidence that the relation between the structure of hydrophobic part of PC and the magnitude of the effects induced by cholesterol found at lower sterol content is different from that observed at higher sterol concentration. At a lower concentration of sterol (up to 30%), the condensing effect of cholesterol is stronger on saturated DSPC than on PCs containing monounsaturated chain(s), which is consistent with the conclusions drawn by other authors. However, at higher sterol content (>= 50%), saturated DSPC is less susceptible to the influence of sterol than the investigated unsaturated PCs. To explain these irregularities, we have considered the strength of van der Waals interactions as well as the influence of sterol on the tilt of polar heads of PCs. It was also found that in the whole range of sterol concentration the ordering effect is stronger on saturated DSPC as compared to unsaturated phospholipids. However, at lower sterol content (up to 30%) the ordering effect induced on unsaturated PCs is rather weak, and the ordering does not change drastically in comparison with pure PCs film.