화학공학소재연구정보센터
Langmuir, Vol.27, No.6, 2146-2149, 2011
In Situ Observation of Water Dissociation with Lattice Incorporation at FeO Particle Edges Using Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy
The dissociation of H2O and formation of adsorbed hydroxyl groups, on FeO particles grown on Au(111) were identified with in situ,: X:ray photoelectron spectroscopy (XPS) at water pressures ranging from 3 x 10(-8) to 0.1 Torr. The facile dissociation of H2O takes place at FeO particle edges, and it was successfully observed in situ With atomically resolved scanning tunneling microscopy (STM). The in situ STM studies show that adsorbed hydroxyl groups were formed exclusively along the edges of the FeO particles with the 0 atom becoming directly incorporated into the oxide crystalline lattice The STM results are consistent with coordinatively unsaturated ferrous (CUF) sites along the FeO particle edge causing the observed reactivity with H2O. Our results also directly illustrate how structural defects and under.-coordinated sites participate in chemical reactions.