화학공학소재연구정보센터
Langmuir, Vol.26, No.22, 16841-16847, 2010
Gold-Nanoparticle-Stabilized Pluronic Micelles Exhibiting Glutathione Triggered Morphology Evolution Properties
Nanocomposites constructed from metallic nanoparticles and amphiphilic copolymers have attracted substantial interest for various potential applications. Here we report on the nanocomposites prepared through cross-linking pluronic micelles with gold nanoparticles. The covalent binding of gold nanoparticles onto the micelles and the thermoresponsibility of the system was followed via ultraviolet-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The gold-nanoparticle-stabilized pluronic micelles can take thiol-exchangc reaction with glutathione and their morphology spontaneously evolved and reassembled into large "vesicular"-like nanocapsules. Obvious temperature responsibility was followed in the gold-nanoparticle-stabilized pluronic micelles system and also the glutathione triggered nanocapsules systems. It is believed that the high stability and glutathione responsibility of the Au-NPs shell-cross-linked micelles allowed for high potential in drug delivery and biosensors.