Langmuir, Vol.26, No.12, 10093-10101, 2010
Structure and Gelation Mechanism of Tunable Guanosine-Based Supramolecular Hydrogels
The mechanism of gelation of 50/50 w/w mixtures of guanosine (G) and 2',3',5'-tri-O-acetylguanosine (TAcG) in aqueous 0.354 M KCl was investigated using a combination of static light scattering (SLS), polarized and depolarized dynamic light scattering (VV and VH DLS), small-angle neutron and X-ray scattering (SANS and SAXS), and viscometric experiments. SLS and viscometry show a dramatic increase in apparent molecular weight and hydrodynamic volume at 0.2 wt % and 0.3 wt %, respectively, indicating the critical concentration for self-association of G/TAcG quartets into columnar assemblies lies below 0.2 wt %. Above this concentration, SANS and SAXS generate complementary information on the structure of the individual columnar stacks. VV and VH DLS results indicate bimodal correlation functions, whose properties suggest, respectively, translational and rotational diffusion of a bimodal distribution of particles. The fast mode appears to originate front fibrillar agglomerates of G/TAcG columnar quartet assemblies, while the slow mode comes front microgel domains. Guinier plot analysis of the SLS data probes the internal structure of the microgel domains. Collectively, the results suggest that sot and microgel phases coexist below the macroscopic gel point, and that the sal phase contains individual columnar stacks of G/TAcG quartets and fibrillar aggregates formed via lateral aggregation of these columnar assemblies. With increasing concentration, the DLS data indicate a progressive increase in the volume fraction of microgel domains, which ultimately leads to macroscopic gelation. Prior observation of a transient network contribution to the gel rheology at low temperature is attributed to the presence of individual columnar stacks within the gel network.