화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.158, No.3, A352-A355, 2011
Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries
Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today's commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect to the standard hydrogen electrode, which makes this material attractive for use as a negative electrode in aqueous electrolytes. This material was synthesized using a Pechini type method. Galvanostatic cycling of the resulting lithium titanium phosphate showed an initial discharge capacity of 115 mAh/g and quite good capacity retention during cycling, 84% after 100 cycles, and 70% after 160 cycles at a 1 C cycling rate in an organic electrolyte. An initial discharge capacity of 113 mAh/g and capacity retention of 89% after 100 cycles with a coulombic efficiency above 98% was observed at a C/5 rate in pH-neutral 2 M Li2SO4. The good cycle life and high efficiency in an aqueous electrolyte demonstrate that lithium titanium phosphate is an excellent candidate negative electrode material for use in aqueous lithium-ion batteries. (C) 2011 The Electrochemical Society. [DOI:10.1149/1.3536619] All rights reserved.