Journal of the American Chemical Society, Vol.133, No.14, 5305-5311, 2011
Microfluidic Synthesis of Highly Shape-Anisotropic Particles from Liquid Crystalline Elastomers with Defined Director Field Configurations
In this article, we present the synthesis of highly shape-anisotropic, micrometer-sized particles from liquid crystalline elastomers, which have the ability to reversibly change their shape in response to a certain external stimulus. For their preparation, we utilized a microfluidic setup. We succeeded in preparing sets of particles with differing degrees of shape anisotropy in their ground state including highly anisotropic fiber-like objects. All samples produced movement during the phase transition from the nematic to the isotropic phase of the liquid crystal. Depending on the direction of this shape change, we classified the samples in two groups. One type showed a contraction, while the other showed an expansion during the actuation, generating displacements of 60% and 80%, respectively. Using X-ray diffraction experiments, we could show that the different actuation properties arise from different director patterns of the liquid crystalline moieties in the microparticles. While the weakly shape-anisotropic microparticles possess a concentric director field (director perpendicular to the symmetry axis), the highly anisotropic fiber-like particles show an alignment of the director along the fiber axis. We present an explanation, claiming that this is the result of two different orientation mechanisms involving elongational flow on the one side and "log-rolling" on the other.