화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.132, No.4, 1410-1423, 2010
Large All-Hydrocarbon Spoked Wheels of High Symmetry: Modular Synthesis, Photophysical Properties, and Surface Assembly
In a convergent modular synthesis, a very efficient pathway to shape-persistent molecular spoked wheels has been developed and applied according to the covalent-template concept. The structurally defined two-dimensional (2D) oligo(phenylene-ethynylene-butadiynylene)s (OPEBs) presented here are about 8 nm sized hydrocarbons of high symmetry. 48 alkyl chains attached to the molecular plane (hexyl and hexadecyl, respectively) guarantee a high solubility of the compounds. The structure and uniformity of these defined, stable, DO symmetrical compounds is verified by MALDI-MS, GPC analysis, and high-temperature (HT) H-1 and C-13 NMR. Detailed photophysical measurements of nonaggregated molecules in solution (as confirmed by dynamic light scattering (DLS)) focus on the identification of chromophores by comparison with suitable model compounds. Moreover, time-resolved measurements including fluorescence lifetime and depolarization support the chromophore assignment and reveal the occurrence of intramolecular energy transfer. Scanning tunneling microscope (STM) characterization at the solid/liquid interface demonstrates the efficient self-assembly of the OPEBs into hexagonal 2D crystalline layers with a periodicity determined by both the size of the OPEB backbone and the length of peripheral side chains. Atomic force microscope (AFM) studies show a very different assembly behavior of the two spoked wheel molecules, on both graphite and mica. While the hexyl-substituted wheel can form stacked superstructures, hexadecyl groups prevent any ordering in the film aside from the monolayer directly in contact with the surface.