Journal of the American Chemical Society, Vol.132, No.3, 967-979, 2010
Conformationally Gated Fragmentations and Rearrangements Promoted by Interception of the Bergman Cyclization through Intramolecular H-Abstraction: A Possible Mechanism of Auto-Resistance to Natural Enediyne Antibiotics?
A variety of fragmentations and rearrangements can follow Bergman cyclization in enediynes equipped with acetal rings mimicking the carbohydrate moiety of natural enediyne antibiotics of the esperamicine and calchiamicine families. In the first step of all these processes, intramolecular H-atom abstraction efficiently intercepts the p-benzyne product of the Bergman cyclization through a six-membered TS and transforms the p-benzyne into a new more stable radical. Depending on the substitution pattern and reaction conditions, this radical follows four alternative paths: (a) abstraction of an external hydrogen atom, (b) O-neophyl rearrangement which transposes O- and C-atoms of the substituent, (c) fragmentation of the O-C bond in the acetal ring, or (d) fragmentation with elimination of the appended acetal moiety as a whole. Experiments with varying concentrations of external H-atom donor (1,4-cyclohexadiene) were performed to gain further insight into the competition between intermolecular H-abstraction and the fragmentations. The Thorpe-Ingold effect in gem-dimethyl substituted enediynes enhances the efficiency of fragmentation to the extent where it cannot be prevented even by a large excess of external H-atom donor. These processes provide insight into a possible mechanism of unusual fragmentation of esperamicin A, upon its Bergman cycloaromatization and lay foundation for a new approach for the conformational control of reactivity of these natural antitumor antibiotics. Such an approach, in conjunction with supramolecular constraints, may provide a plausible mechanism for resistance to enediyne antibiotics by the enediyne-producing microorganisms.