Journal of Supercritical Fluids, Vol.55, No.1, 107-115, 2010
Computational-fluid-dynamics study of a Kenics static mixer as a heat exchanger for supercritical carbon dioxide
The thermal efficiency of a Kenics (R) KM static mixer used to pre-heat supercritical carbon dioxide, under high pressure conditions, is studied using computational fluid dynamics (CFD). A mesh sensitivity analysis is performed and the CFD model is validated against experimental results on heat transfer with conventional and supercritical fluids. Three turbulent models - standard k-epsilon, RNG k-epsilon, and k-omega - are employed to model the flow and heat transfer under high pressure conditions: the effects of large variations of the physical properties in the pseudo-critical region of the fluid are also studied. The RNG k-e model gives results that are closer to the experimental data than the other two turbulence models. The numerical results show that the static mixer has a thermal efficiency more than three times higher than that of a conventional empty pipe heat exchanger with similar heat transfer area. (C) 2010 Elsevier B.V. All rights reserved.