Journal of Power Sources, Vol.196, No.5, 2913-2923, 2011
Linear parameter varying battery model identification using subspace methods
The advent of hybrid and plug-in hybrid electric vehicles has created a demand for more precise battery pack management systems (BMS). Among methods used to design various components of a BMS, such as state-of-charge (SoC) estimators, model based approaches offer a good balance between accuracy, calibration effort and implementability. Because models used for these approaches are typically low in order and complexity, the traditional approach is to identify linear (or slightly nonlinear) models that are scheduled based on operating conditions. These models, formally known as linear parameter varying (LPV) models, tend to be difficult to identify because they contain a large amount of coefficients that require calibration. Consequently, the model identification process can be very laborious and time-intensive. This paper describes a comprehensive identification algorithm that uses linear-algebra-based subspace methods to identify a parameter varying state variable model that can describe the input-to-output dynamics of a battery under various operating conditions. Compared with previous methods, this approach is much faster and provides the user with information on the order of the system without placing an a priori structure on the system matrices. The entire process and various nuances are demonstrated using data collected from a lithium ion battery, and the focus is on applications for energy storage in automotive applications. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:Subspace identification;Linear parameter varying systems;Battery modeling;System identification;P/HEV;State space