화학공학소재연구정보센터
Journal of Power Sources, Vol.196, No.3, 1012-1018, 2011
Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell
Pt nanoparticles are deposited onto graphene sheets via synchronous reduction of H2PtCl6 and graphene oxide (GO) suspension using NaBH4. Lyophilization is introduced to avoid irreversibe aggregation of graphene (G) sheets, which happens during conventional drying process. Pt/G catalysts reveal a high catalytic activity for both methanol oxidation and oxygen reduction reaction compared to Pt supported on carbon black (Pt/C). The performance of Pt/G catalysts is further improved after heat treatment in N-2 atmosphere at 300 degrees C for 2h, and the peak current density of methanol oxidation for Pt/G after heat treatment is almost 3.5 times higher than Pt/C. Transmission electron microscope (TEM) images show that the Pt particles are uniformly distributed on graphene sheets. X-ray photoelectron spectroscopy (XPS) results demonstrate that the interaction between Pt and graphene is enhanced during annealing. It suggests that graphene has provided a new way to improve electrocatalytic activity of catalyst for fuel cell.