Journal of Power Sources, Vol.196, No.2, 808-813, 2011
Reversible air electrodes integrated with an anion-exchange membrane for secondary air batteries
Reversible air electrodes integrated with a polymer electrolyte membrane have been proposed for use in rechargeable metal-air batteries or unitized regenerative fuel cells to reduce the impact of atmospheric carbon dioxide. Reversible air electrodes were prepared with an anion-exchange membrane (AEM) as a polymer electrolyte membrane and platinum-based catalysts. The AEM at the interface between the alkaline electrolyte and the air electrode layer plays major roles in AEM-type air electrodes as follows: it blocks (a) the permeation of cations in the alkaline electrolyte into the air electrode layer to prevent carbonate precipitation, (b) penetration of the alkaline solution itself, and (c) neutralization of the alkaline electrolyte by carbon dioxide, all of which prevent performance degradation of oxygen reactions. Catalysts for decreasing the overvoltage of oxygen reactions were also investigated with the AEM-type air electrode, and the overall efficiency was improved due to a remarkable decrease in the potential for the oxygen evolution reaction with Pt-Ir catalysts. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:Air electrode;Anion-exchange membrane;Oxygen reduction reaction;Oxygen evolution reaction;Metal-air battery;Carbon dioxide