화학공학소재연구정보센터
Journal of Power Sources, Vol.195, No.17, 5731-5734, 2010
Optimal microporous layer for proton exchange membrane fuel cell
This study elucidates how fabrication processes (screen-printing and spraying) and constituent materials (carbon paper as backing, Acetylene Black (AB) carbon (42 nm), XC-72R carbon (30 nm) or BP2000 (15 nm) as carbon powders, and 10-50% fluorinated ethylene propylene (FEP) as hydrophobic substances) for microporous layers (MPLs) affect the performance of proton exchange membrane fuel cells. The screen-printing process produces MPLs with smaller surface fractures than does the spraying process. The effect of optimal FEP content on cell performance is noted. The presence of an optimal FEP content is due to the counterbalance between enhanced performance produced with increased gas permeability and decreased performance yielded with small contact area and electrical conductivity with excess FEP. The MPL with large carbon powders is preferred when oxygen supply is limited; otherwise, small carbon powders should be utilized. Optimal MPL design should address negative effects possibly associated with contact resistance, gas permeation resistance, and excess water resistance. (C) 2010 Elsevier B.V. All rights reserved.