Journal of Power Sources, Vol.195, No.16, 5252-5257, 2010
Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers
The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:Proton exchange membrane fuel cell;PEFC stack;Liquid water transport;Flooding;Laser perforation;Gas diffusion layer