화학공학소재연구정보센터
Journal of Materials Science, Vol.45, No.17, 4790-4795, 2010
Effect of grain size on strain rate sensitivity of cryomilled Al-Mg alloy
Al-Mg alloy powder was cryomilled to achieve a nanocrystalline (NC) structure having an average grain size of 50 nm with high thermal stability, and then consolidated by quasi-isostatic forging. The consolidation resulted in a bulk material with ultrafine grains of about 250 nm, and the material exhibited enhanced strength compared to conventionally processed Al-Mg alloy. The hardness of as-cryomilled powder, the forged ultrafine-grained (UFG) material, and the conventional coarse-grained (CG) alloy were measured by nanoindentation using various loading rates, and the results were compared with strain rate sensitivity (SRS) from uniaxial compression tests. Negative SRS was observed in the cryomilled NC powder and the forged UFG material, while the conventional alloy was relatively insensitive to strain rate. The dependence on loading rate was stronger in the NC powders than in the UFG material.