화학공학소재연구정보센터
Journal of Materials Science, Vol.45, No.13, 3538-3546, 2010
Modeling of conductivity in carbon fiber-reinforced cement-based composite
Carbon fiber-reinforced cement is a multifunctional composite material owing to its conductive behavior. This article presents a model for quantitative analysis of the conductive mechanism. The model is based on the concept that the electronic conduction dominates when the composite is in dry state and is a combination of ohmic continuum conduction and tunnel transmission conduction. Therefore, Ohm's law and tunneling effect theory are employed in the modeling process. Validity of the model has been confirmed by comparison of the calculated and measured results. Furthermore, the model is applied in simulating the strain sensing characteristics. Numerical results are shown and compared with measured data obtained under compressive loading. The agreement between theoretical and experimental results provides further support to the model.