Journal of Hazardous Materials, Vol.185, No.2-3, 889-897, 2011
Synthesis of hierarchical Ni(OH)(2) and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water
Ni(OH)(2) and NiO nanosheets with hierarchical porous structures were synthesized by a simple chemical precipitation method using nickel chloride as precursors and urea as precipitating agent. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption isotherms. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The pore structure analyses indicate that Ni(OH)(2) and NiO nanosheets are composed of at least three levels of hierarchical porous organization: small mesopores (ca. 3-5 nm), large mesopores (ca. 10-50 nm) and macropores (100-500 nm). The equilibrium adsorption data of CR on the as-prepared samples were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities for removal of CR was determined using the Langmuir equation and found to be 82.9, 151.7 and 39.7 mg/g for Ni(OH)(2) nanosheets, NiO nanosheets and NiO nanoparticles, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The as-prepared Ni(OH)(2) and NiO nanosheets are found to be effective adsorbents for the removal of Congo red pollutant from wastewater as a result of their unique hierarchical porous structures and high specific surface areas. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:Ni(OH)(2);NiO;Nanosheets;Hierarchical porous structures;Congo red;Adsorption isotherm;Kinetics