화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.177, No.1-3, 487-494, 2010
Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation
Microbial fuel cell (MFC; open-air cathode) was evaluated as bio-electrochemical treatment system for distillery wastewater during bioelectricity generation. MFC was operated at three substrate loading conditions in fed-batch mode under acidophilic (pH 6) condition using anaerobic consortia as anodic-biocatalyst. Current visualized marked improvement with increase in substrate load without any process inhibition (2.12-2.48 mA). Apart from electricity generation, MFC documented efficient treatment of distillery wastewater and illustrated its function as an integrated wastewater treatment system by simultaneously removing multiple pollutants. Fuel cell operation yielded enhanced substrate degradation (COD, 72.84%) compared to the fermentation process (similar to 29.5% improvement). Interestingly due to treatment in MFC, considerable reduction in color (31.67%) of distillery wastewater was also observed as against color intensification normally observed due to re-polymerization in corresponding anaerobic process. Good reduction in total dissolved solids (TDS, 23.96%) was also noticed due to fuel cell operation, which is generally not amenable in biological treatment. The simultaneous removal of multiple pollutants observed in distillery wastewater might be attributed to the biologically catalyzed electrochemical reactions occurring in the anodic chamber of MFC mediated by anaerobic substrate metabolism. (C) 2009 Elsevier B.V. All rights reserved.