화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.347, No.2, 215-220, 2010
Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl pyrrolidone) electrospun nanofibers
Highly dispersed ZnO quantum dots (QDs) in poly(vinyl pyrrolidone) (PVP) nanofibers have been successfully prepared by electrospinning technique. The structure and optical properties were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), resonant Raman spectra, Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric and differential thermal analysis (TG-DTA), ultraviolet (UV)-vis absorption spectra, and photoluminescence (PL) spectra. In the PVP/ZnO QDs composite nanofibers, PVP molecules could effectively prevent the aggregation of ZnO QDs and passivate the surface defects of ZnO QDs. Thus, by comparing ZnO QDs, the composite nanofibers exhibited a blue-shifted band gap and enhanced ultraviolet (UV) emission. Furthermore, the composite nanofibers prepared at higher voltage showed more intense UV emission than which obtained at lower voltage, suggesting that the UV emission intensity of the composite nanofibers could be controlled by adjusting the electrospinning voltage. (C) 2010 Elsevier Inc. All rights reserved.