화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.1, 41-48, January, 2011
Production of drinking water from saline water by direct contact membrane distillation (DCMD)
E-mail:
Nine types of commercially available membranes were used for a DCMD system to investigate the effect of membrane difference on permeation flux and conductivity. Some characteristics such as liquid entry pressure (LEP), contact angle (CA), gas permeability were checked to understand the membranes more comprehensively. Three different depth membrane modules were set up to study the heat and mass transfer process in a DCMD system. The effect of different operation parameters were studied including flow mode, flow rate, temperature, and NaCl concentration. The permeation conductivity values were under 8 mS/cm for all the experimental conditions. With real seawater, the permeate flux dropped from 23.76 L/m2 h to 14.36 L/m2 h over one month at the following conditions: hot side inlet temperature of 60℃ , cold side inlet temperature of 20 ℃, and hot and cold side flow rate of 0.6 L/min for PTFE pore size 0.22 mm membranes. After cleaning, the membrane successfully reused in the DCMD system. A mathematical model was built to simulate the mass and heat transfer process, and the experimental results agree with the theoretical calculations.
  1. Lawson KW, Lloyd DR, J. Membr. Sci., 124(1), 1 (1997)
  2. Gryta M, Morawski AW, Tomaszewska M, Catal. Today, 56(1-3), 159 (2000)
  3. Martinez-Diez L, Florido-Diaz FJ, Desalination, 137(1-3), 267 (2001)
  4. Nene S, Kaur S, Sumod K, Joshi B, Raghavarao KSMS, Desalination, 147(1-3), 157 (2002)
  5. Banat A, Simandl J, J. Membr. Sci., 163, 333 (1993)
  6. Gryta M, Tomaszewska M, Grzechulska J, Morawski AW, J. Membr. Sci., 181(2), 279 (2001)
  7. Udriot H, Araque A, Von Stokar U, Chem. Eng. J., 54, 87 (1994)
  8. Tomaszewska M, Gryta M, Morawski AW, J. Membr. Sci., 102, 113 (1995)
  9. Thiruvenkatachari R, Manickam M, Kwon TO, Moon IS, Kim JW, Sep. Sci. Technol., 41(14), 3187 (2006)
  10. Matheswaran M, Kwon TO, Kim JW, Moon IS, J. Ind. Eng. Chem., 13(6), 965 (2007)
  11. Lee JW, Kwon TO, Moon IS, Desalination., 189, 309 (2006)
  12. Lawson KW, Lloyd DR, J. Membr. Sci., 124(1), 1 (1997)
  13. Phattaranawik J, Jiraratananon R, J. Membr. Sci., 188(1), 137 (2001)
  14. Jo¨ nsson AS, Wimmerstedt R, Desalination., 53, 181 (1985)
  15. Bandini S, Gostoli C, Sarti GC, J. Membr. Sci., 73(2-3), 217 (1992)
  16. Sarti GC, Gostoli C, Bandini S, J. Membr. Sci., 80(1), 21 (1993)
  17. Rivier CA, Garcia-Payo MC, Marison IW, von Stockar U, J. Membr. Sci., 201(1-2), 1 (2002)
  18. Garcia-Payo MC, Rivier CA, Marison IW, von Stockar U, J. Membr. Sci., 198(2), 197 (2002)
  19. Alklaibi AM, Lior N, Desalination, 171(2), 111 (2005)
  20. Kim JW, Park SE, Kim TS, Jeong DY, Ko KH, Nukleonika., 49, 137 (2004)
  21. Jonsson AS, Wimmerstedt R, Harrysson AC, Desalination., 56, 237 (1985)
  22. Liu GL, Zhu C, Cheung CS, Leung CW, Heat Mass Transfer., 34, 329 (1998)
  23. Abu Al-Rub FA, Banat F, Bani-Melhem K, Sep. Sci. Technol., 38(15), 3645 (2003)
  24. Hanemaaijer JH, Desalination., 168, 355 (2004)
  25. El Amali A, Bouguecha S, Maalej M, Desalination., 168, 357 (2004)
  26. Chernyshov MN, Meindersma GW, de Haan AB, Desalination, 157(1-3), 315 (2003)
  27. Walton J, Lu H, Turner C, Solis S, Hein H, Report No. 81, College of Engineering, University of Texas at El Paso (2004)