화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.116, No.2, 902-912, 2010
Nonisothermal Crystallization Behavior and Mechanical Properties of Poly(butylene succinate)/Silica Nanocomposites
Silica nanoparticles and poly(butylene succinate) (PBS) nanocomposites were prepared by a melt-blending process. The influence of silica nanoparticles on the nonisothermal crystallization behavior, crystal structure, and mechanical properties of the PBS/silica nanocomposites was investigated. The crystallization peak temperature of the PBS/silica nanocomposites was higher than that of neat PBS at various cooling rates. The half-time of crystallization decreased with increasing silica loading; this indicated the nucleating role of silica nanoparticles. The nonisothermal crystallization data were analyzed by the Ozawa, Avrami, and Mo methods. The validity of kinetics models on the nonisothermal crystallization process of the PBS/silica nanocomposites is discussed. The approach developed by Mo successfully described the nonisothermal crystallization process of the PBS and its nanocomposites. A study of the nucleation activity revealed that the silica nanoparticles had a good nucleation effect on PBS. The crystallization activation energy calculated by Kissinger's method increased with increasing silica content. The modulus and yield strength were enhanced with the addition of silica nanoparticles into the PBS matrix. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sri 116: 902-912, 2010