International Journal of Control, Vol.83, No.8, 1710-1717, 2010
A novel design approach for switched LPV controllers
A novel design procedure for switched linear parameter-varying (LPV) controller is proposed. The new procedure, based on the Youla parameterisation ideas, decomposes the controller design into two steps. One focuses on ensuring global stability and the other on fulfilling the local performance specifications. This scheme allows the design of each local controller independently of each other, which may achieve higher performance without compromising the global stability and also simplifies the synthesis and the implementation of the local controllers. Any standard LPV synthesis procedure can be used to design these controllers. On the other hand, the stability during switching is ensured with convex constraints and no restrictions are imposed on the switching among controllers. The use of the proposed procedure is illustrated with an active magnetic bearing example.
Keywords:switched linear parameter-varying systems;linear parameter-varying systems;Youla parametrisation;linear matrix inequalities;active magnetic bearing systems