화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.55, No.12, 2679-2691, 2010
Cooperative Minimum Time Surveillance With Multiple Ground Vehicles
In this paper, we formulate and solve two different minimum time problems related to unmanned ground vehicle (UGV) surveillance. The first problem is the following. Given a set of surveillance UGVs and a polyhedral area, find waypoint-paths for all UGVs such that every point of the area is visible from a point on a path and such that the time for executing the search in parallel is minimized. Here, the sensors' field of view are assumed to have a limited coverage range and be occluded by the obstacles. The second problem extends the first by additionally requiring the induced information graph to be connected at the time instants when the UGVs perform the surveillance mission, i.e., when they gather and transmit sensor data. In the context of the second problem, we also introduce and utilize the notion of recurrent connectivity, which is a significantly more flexible connectivity constraint than, e.g., the 1-hop connectivity constraints and use it to discuss consensus filter convergence for the group of UGVs.