IEEE Transactions on Automatic Control, Vol.55, No.8, 1806-1821, 2010
Quantum Dissipative Systems and Feedback Control Design by Interconnection
The purpose of this paper is to extend J.C. Willems' theory of dissipative systems to open quantum systems described by quantum noise models. This theory, which combines ideas from quantum physics and control theory, provides useful methods for analysis and design of dissipative quantum systems. We describe the interaction of the plant and a class of external systems, called exosystems, in terms of feedback networks of interconnected open quantum systems. Our results include an infinitesimal characterization of the dissipation property, which generalizes the well-known Positive Real and Bounded Real Lemmas, and is used to study some properties of quantum dissipative systems. We also show how to formulate control design problems using network models for open quantum systems, which implements Willems' "control by interconnection" for open quantum systems. This control design formulation includes, for example, standard problems of stabilization, regulation, and robust control.
Keywords:Control by interconnection;damping;dissipation;quantum feedback control;quantum feedback networks;quantum noise;regulation;robustness;stabilization