Fuel Processing Technology, Vol.92, No.3, 479-485, 2011
A discrete particle swarm optimization approach for classification of Indian coal seams with respect to their spontaneous combustion susceptibility
Mine fires due to spontaneous combustion in coal mines is a global concern. This leads to serious environmental and safety hazards and considerable economic losses. Therefore it is essential to assess and classify the coal seams with respect to their proneness to spontaneous combustion to plan the production, storage and transportation capabilities in mines. This paper presents the formulation of clustering problem into a linear assignment model and the application of a discrete particle swarm optimization approach for the classification of coal seams based on their proneness to spontaneous combustion. In this research work, twenty nine coal samples of varying ranks belonging to both high and low susceptibilities to spontaneous combustion have been collected from all the major coalfields of India. Using moisture, volatile matter, and ash content and crossing point temperature of the coal samples as the parameters, the proposed algorithm has been applied to classify the coal seams into three different categories. This classification will be useful for the planners and field engineers for taking ameliorative measures in advance for preventing the occurrence of mine fires. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:Mine fire;Spontaneous combustion;Coal;Classification;Velocity;Discrete particle swarm optimization