Fuel Processing Technology, Vol.91, No.9, 1028-1032, 2010
Co-generation of acetylene and hydrogen for a carbide-based fuel system
The co-generation of acetylene and hydrogen from the hydrolysis of calcium carbide and calcium hydride was investigated as part of a unique carbide-based fuel system intended for high-temperature fuel cells. To gain better control of this highly energetic reaction, glycerin was used to coat the reactant particles to form slurry prior to their reaction with water. This process was shown to moderate the rate of gas production, as well as to provide a means for preparing slurry that could be pumped into the reactor vessel. It was also observed that the presence of calcium hydroxide, a by-product of hydrolysis, lowered the solubility of acetylene resulting in a higher initial flow rate due to less acetylene being dissolved in solution. However, the buildup of calcium hydroxide with time inhibited the hydrolysis of both calcium carbide and calcium hydride causing the acetylene and hydrogen flow rates to decrease. Published by Elsevier B.V.