화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.1, 28-34, February, 2011
양극산화를 이용한 Titania Nanotube(TNT) 박막 제조
Preparation of Titania Nanotube Thin films by Anodizing
E-mail:
초록
티타니아 나노튜브(Titania nanotube, TNT)는 티타늄을 F- 이온을 함유한 전해질 하에서 전기로 양극산화 시켜 제조한 튜브형태의 박막으로 광학 활성을 가진다. 전해질은 증류수와 포름아마이드를 용매로 사용하였으며 HF, NaF, NH4F를 F-이온 성분으로 사용하였다. 전압과 양극산화 시간이 증가함에 따라 TNT의 길이와 직경도 증가하였다. 양극산화에 의해 제조된 TNT는 매우 규칙적인 튜브형태였으며, 제조 조건에 따라 길이는 최대 13.7 μm이었다. 생성된 티타니아는 비정질이었으며 열처리에 의해 아나타제 결정으로 바뀌었다.
Titania nanotube(TNT), which is a tube shaped thin film manufactured by anodizing titanium under F- ion electrolyte, has photo activity. Distilled water and formamide were used as solvent, and HF, NaF, NH4F were used as main F- ions for the electrolyte. The length and the diameter of TNT increased as the voltage and anodizing time increased. TNT prepared by anodizing was a very ordered tube, and had a maximum length of 13.7 μm depending on the conditions of manufacturing. Titania prepared by anodizing was amorphous, and became an anatase crystal after heat treatment.
  1. Ahn S, Choi LK, Jung J, J. Adv. Oxid. Technol., 10, 354 (2007)
  2. Zwilling M, Aucouturier M, Darque-Ceretti E, Electrochim. Acta, 45, 921 (1991)
  3. Varghese OK, Mor GK, Grimes CA, Paulose M, Mukherjee N, J. Nanosci. Nanotechnol, 4, 733 (2004)
  4. Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG, Nanotechnology, 17, 398 (2006)
  5. Mor GK, Shankar K, Varghese OK, Grimes CA, J. Mater. Res., 19, 2989 (2004)
  6. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett, 5, 191 (2005)
  7. Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA, J. Nanosci. Nanotechnol., 5, 1158 (2005)
  8. Raja KS, Misra M, Mahajan VK, Gandhi T, Pillai P, Mohapatra SK, J. Power Sources, 161(2), 1450 (2006)
  9. Raja KS, Mahajan VK, Misra M, J. Power Sources, 159(2), 1258 (2006)
  10. Macak JM, Tsuchiya H, Ghicov A, Schmuki P, Electrochem. Commun., 7, 1138 (2005)
  11. Perez-Blanco JM, Barber GD, Solar Energy Materials and Solar Cells, 92, 997 (2008)
  12. Yang DJ, Park H, Cho SJ, Kim HG, Choi WY, J. Phys. Chem. Solids, 69, 1272 (2008)
  13. Paulose M, Shankar K, Varghese OK, Mor GK, Grimes CA, J. Phys. D: Appl. Phys., 39, 2498 (2006)
  14. Ong KG, Varghese OK, Mor GK, Shankar K, Grimes CA, Solar Energy Materials & Solar Cells, 91, 250 (2007)
  15. Pillai P, Raja KS, Misra M, J. Power Sources, 161(1), 524 (2006)
  16. Paulose M, Varghese OK, Mor GK, Grimes CA, Nanotechnology, 17, 398 (2006)
  17. Macak JM, Tsuchiya H, Bauer S, Ghicov A, Schmuki P, Barczuk PJ, Nowakowska MZ, Chojak M, Kulesza PJ, Electrochem. Commun., 7, 1417 (2005)
  18. Adachi M, Murata Y, Harada M, Yoshikawa S, Chem. Lett., 29(8), 942 (2000)
  19. Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S, J. Phys. Chem. B, 107(27), 6586 (2003)
  20. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC, J. Mater. Res., 16, 3331 (2001)
  21. Cai Q, Paulose M, Varghese OK, Grimes CA, J. Mater. Res., 20, 230 (2005)
  22. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 5, 191 (2005)
  23. Lee WJ, Alhoshan M, Smyrl WH, J. Electrochem. Soc., 153, 499 (2006)
  24. Kang SH, Kim JY, Kim HS, Sung YE, J. Ind. Eng. Chem., 14(1), 52 (2008)
  25. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA, Nanotechnology, 18, 065707 (2007)
  26. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA, J. Phys. Chem. B, 110(33), 16179 (2006)
  27. Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA, J. Phys. Chem. C, 111, 14992 (2007)