Energy, Vol.34, No.10, 1539-1551, 2009
Optimization of network planning by the novel hybrid algorithms of intelligent optimization techniques
This paper proposes a new hybrid algorithm Meta-heuristic for the problem of network planning systems. The main goal of this paper is, to develop an efficient optimization tool which will minimise the cost functions of the stated optimization problems in network planning systems. The following are the objectives of the research: to investigate the capabilities of genetic algorithm, simulated annealing and tabu search for the defined optimization tasks; to develop a hybrid optimization algorithm which will produce improved iterations compared to those found by GA, SA, and TS algorithms. The performance of the hybrid algorithm is illustrated and six hybrid algorithms are developed, to improve the iterations obtained. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. It is advantageous to use exact DC load flow constraint equations based on the modified form of Kirchhoff's Second Law because the iterative process for line addition is not required. Hence, the computation time is decreased. Finally, the hybrid VI shows to be a very good option for network planning systems given that it obtains much accentuated reductions of iteration, which is very important for network planning. (C) 2009 Elsevier Ltd. All rights reserved.
Keywords:Hybrid algorithms;Evolutionary computation techniques;System planning;Simulated annealing;Genetic algorithm;Tabu search;Mathematical programming;Heuristic techniques