- Previous Article
- Next Article
- Table of Contents
Macromolecular Research, Vol.18, No.11, 1037-1044, November, 2010
Electrical conduction mechanism of polypyrrole-alginate polymer films
E-mail:
The polypyrrole (PPy) - alginate (Ag) blend films were synthesized using different wt% of Ag and characterized by Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-vis) spectroscopy. The morphology was examined by transmission electron microscopy (TEM). The electrical conductivity was determined by studying the I-V characteristics at temperatures ranging from 300-500 K. The results are shown by measuring the dependence of the current on the field, temperature, and blending compositions in the form of the I-V characteristics, and the analysis was made by interpretation of the Poole-Frenkel, Schottky ln (J) vs. T plots. For individual polymers, the conduction mechanism was observed to be a Poole-Frenkel type. After the polymer blend was formed, charge conduction appeared to be the Poole-Frenkel mechanism at both lower and higher temperatures. These results suggest that the Pool-Frenkel mechanism is mainly responsible for the observed conduction. The conductivity of the films increased with increasing alginate wt% in the blend and the mobility of the charge carriers increased with increasing alginate wt% concentration in the blend.
- Tourillon G, Handbook of Conducting Polymers, New York, Marcel Dekker, 1986, p293.
- Scrosati B, Science and Applications of Conducting Polymers, London, Chapman and Hall, 1993, Ch. 7.
- Jasne S, Encyclopedia of Polymer Science and Engineering, New York, John Wiley, 1988, p51.
- Bockris JO, Miller D, Conducting Polymers: Special Applications, Alcacer L, Ed., Dordrecht, Reidel Publishers, 1989, p1.
- Palmisano F, Benedetto GE De, Zambonin CG, Analyst, 122, 365 (1997)
- Anuar K, Zarina B, Ekramul HNMM, Proc. Indian Acad. Sci., 114, 155 (2002)
- Diaz AF, Kanazawa KK, Gardini GP, J. Chem. Soc.-Chem. Commun., 635 (1979)
- Anuar K, Abdullah AH, Idris Z, J. Ultra Sci. Phys. Sci., 12, 2 (2001)
- Niwa O, Tamamura T, J. Chem. Soc.-Chem. Commun., 470, 817 (1984)
- Otero TF, Sansinena JM, J. Electroanal. Chem., 412(1-2), 109 (1996)
- Yan F, Xue G, Chen J, Lu Y, Synth. Met., 123, 17 (2001)
- Armes SP, Gottesfeld S, Beery JG, Garzon F, Agnew SF, Polymer, 32, 2325 (1992)
- Maeda S, Armes SP, Synth. Met., 73, 151 (1995)
- Bhattacharya A, Ganguly KM, De A, Sarkar S, Mater. Res. Bull., 31(5), 527 (1996)
- Agag T, Takeichi T, Polymer, 41(19), 7083 (2000)
- Fishman ML, Coffin DR, Konstance RP, Carbohydr. Polym., 41, 317 (2000)
- Vazquez A, Dominguez V, Kenny JM, J. Thermoplast. Compos., 12, 477 (1999)
- Chen XY, Guo QP, Mi YL, J. Appl. Polym. Sci., 69(10), 1891 (1998)
- Koenig MF, Huang SJ, Polymer, 36(9), 1877 (1995)
- Matzinos P, Tserki V, Kontoyiannis A, Panayiotou C, Polym. Degrad. Stabil., 77, 17 (2002)
- Wang H, Sun XZ, Seib P, J. Appl. Polym. Sci., 84(6), 1257 (2002)
- Orts WJ, Nobes GAR, Glenn GM, Gray GM, Imam S, Chiou BS, Polym. Adv. Technol., 18, 629 (2007)
- Yang J, Yu J, Ma X, Starch/Starke, 58, 580 (2006)
- Follain N, Joly C, Dole P, Roge B, Mathlouthi M, Carbohydr. Polym., 63, 400 (2006)
- Ma XF, Yu JG, Ma YB, Carbohydr. Polym., 60, 111 (2005)
- Saiah R, Sreekumar PA, Leblanc N, Castandet M, Saiter JM, Cereal. Chem., 84, 276 (2007)
- Tiwari A, J. Polym. Res., 15, 337 (2008)
- Mallik H, Sarkar A, J. Non-Cryst. Solids, 352, 795 (2006)
- Bruno FF, Nagarajan R, Roy, Kumar J,Samuelson LA, J. Macromol. Sci. A, 40, 1327 (2003)
- Ronald E, Pelrine RD, Jose PJ, Sens. Actuators A-Phys., 64, 77 (1998)
- Kurt ID, Gudmund SB, Olav S, Int. J. Biomacromolecules, 21, 47 (1997)
- Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grondahl L, Biomacromolecules, 8(8), 2533 (2007)
- Peter G, Microbiology, 144, 1133 (1998)
- Basavaraja C, Pierson R, Vishnuvardhan TK, Huh DS, Eur. Polym. J., 44, 1556 (2008)
- Basavaraja C, Veeranagouda Y, Lee K, Pierson R, Huh DS, J. Polym. Sci. B: Polym. Phys., 47(1), 36 (2009)
- Basavaraja C, Pierson R, Huh DS, Venkataraman A, Basavaraja S, Macromol. Res., 17(8), 609 (2009)
- Basavaraja C, Veeranagouda Y, Lee K, Vishnuvardhan TK, Huh DS, J. Polym. Res., 17, 233 (2010)
- Basavaraja C, Kim NR, Jo EA, Huh DS, Macromol. Res., 18(3), 222 (2010)
- Basavaraja C, Ri KN, Huh DS, Polym. Compos., 10.1002/pc.20966 (2010)
- Liu YC, J. Electroanal. Chem., 571(2), 255 (2004)
- Nicho ME, Hu H, Sol. Energy Mater. Sol. Cells, 63, 423 (2000)
- Patil SF, Bedekar AG, Agashe C, Mater. Lett., 14, 307 (1992)
- Basavaraja C, Choi YM, Park HT, Huh DS, Lee JW, Revanasiddappa M, Raghavendra SC, Khasim S, Vishnuvardha TK, Bull. Korean Chem. Soc., 28, 1104 (2007)
- Khare PK, Gaur MS, Indian J. Pure Appl. Phys., 31, 326 (1993)
- Schottky W, Z. Phys., 15, 872 (1923)
- Pulfrey DL, Shousha AH, Young L, J. Appl. Phys., 41, 2828 (1970)
- Hill KM, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 23, 59 (1971)
- Frenkel J, Phys. Rev., 54, 647 (1938)
- Ohring M, The Materials Science of Thin Films, Academic Press, San Diego, 1992, Chapter 10.
- Taylor DM, Lewis TJ, J. Phys. D-Appl. Phys., 4, 1346 (1971)
- Solomon I, Benferhat R, Tran-Quoc H, Phys. Rev. B, 30, 3422 (1984)
- Abd El-kader FH, Gaafer SA, Mahmoud KH, Polym. Compos., 30, 214 (2009)
- Mort J, Pfister G, Sessler GM, in Electronic Properties of Polymers, Mort J, Pfister G, Eds., Wiley, New York, 1982.
- Dwyer OJ, J. Appl. Phys., 37, 2599 (1966)
- Joncher AK, Thin Solid Films, 1, 213 (1967)