화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.6, 670-675, December, 2010
비닐-나노실리카볼 화합물의 클리어코트 특성 연구
Synthesis of Vinyl-nano Silica Ball Composite : Its Application to Clearcoat
E-mail:
초록
나노실리카볼 입자를 합성하고 표면에 비닐기를 부여하는 합성 연구를 통해 다양한 크기로 조절이 된 유-무기하이브리드 입자인 비닐-나노실리카볼이 합성되었다. 다양한 크기의 비닐-나노실리카볼 입자를 상업적으로 적용되고 있는 아크릴-멜라민 클리어코트에 후첨시키고 경화시켰을 때, 클리어코트의 광택도 증가 및 유지 특성에 대해 연구하였다. 실리카볼 입자가 250 nm 정도인 경우 Matting effect에 의한 광택도 감소가 관측되었으나 20∼30 nm로 작아지면 광택도 유지 효과가 약 7%까지 증가하였다. 나노실리카볼 대신 상업용 친수 실리카 Aerosil 200 (Hydrophilic fumed silica, 평균입도 12 nm, Degussa)을 사용하여 비닐- fumed 실리카 화합물을 합성하여 클리어코트에 적용하면 광택도 유지효과가 약 2% 정도만 증가하였다.
Inorganic-organic hybrid material such as vinyl-nano sized silica ball was synthesized by acrylo-alkoxysilane and nano silica ball with different particle size. And then they were formulated into acrylic-melamine clearcoat. This material is fully characterized with various analytical methods and applied for strength measurement. The glossy effect, matting effect and anti-scratching properties of materials were investigated for further growth and maintenance. When the particle size of nano silica ball is 20∼30 nm, the glossy retain effect was increased by 7% compared to bare acrylic-melamine clearcoat. When a commercially available silica Aerosil 200 (Hydrophilic fumed silica, average particle size 12 nm, Degussa) react with vinyl alkoxysilane vinyl-fumed silica complex form. The vinyl-fumed silica along with clearcoat increases only 2% increase at glossy retain. Nano-scratch test results also support the glossy retain effect of vinyl nano-sized silica ball in clearcoat.
  1. High-performance organic coatings, Edited by Anand S. Khanna, CRC Press (ISBN 978-1-4200-7969-2), USA; Woodhead Publishing Limited (ISBN 978-1-84569-265-0), Cambridge England Rozenberg, B. A.; Tenne, R. p 407-428 (2008)
  2. Weigert WM, Kleemann A, Schreyer G, Chem. Ztg., 99, 19 (1975)
  3. Jurgetz A, Met. Finish., Automotive paint performance., 93, 53 (1995)
  4. Lonyuk M, Bosma M, Vijverberg CAM, Janssen M, Prog. Org. Coat., 61, 308 (2008)
  5. Rozenberg BA, Tenne R, Prog. Polym. Sci., 33, 40 (2008)
  6. Chen J, Soucek MD, Eur. Polym. J., 39, 505 (2003)
  7. Valet A, Prog. Org. Coat., 35, 223 (1999)
  8. Ley DA, Fiori DE, Quinn RJ, Prog. Org. Coat., 35, 109 (1999)
  9. Van den Berg KJ, Van den Hen LGJ, Van den Haak HJW, Prog. Org. Coat., 110, 61 (2008)
  10. Richardson JL, Met. Finish., 98, 34 (2000)
  11. Adamsons K, Blackman G, Gregorovich B, Lin L, Matheson R, Prog. Org. Coat., 36, 64 (1997)
  12. Kardar P, Ebrahimi M, Bastani S, Prog. Org. Coat., 62, 321 (2008)
  13. Additives for polymers, August 24, 2 (2004)
  14. Aloui F, Ahajji A, Irmouli Y, George B, Charrier B, Merlin A, Appl. Surf. Sci., 253(8), 3737 (2007)
  15. U. S. Patent 6228799 B1 (2001)
  16. D. Fauchadour, T. Jeanson, J-N. Bousseau, and B. Echalier/Rhodia Rare Earths and Silica Systems, Lyon, France, Paint & Coatings Industry, August 1 (2005)
  17. Zhou S, Wu L, Sun J, Shen W, Prog. Org. Coat., 45, 33 (2002)
  18. Adamsons K, Progress in Polymer Science, 25, November (1363)
  19. Bauer F, Flyunt R, Czihal K, Langguth H, Mehnert R, Schubert R, Buchmeiser MR, Prog. Org. Coat., 60, 121 (2007)
  20. Cho JD, Kim YB, Ju HT, Hong JW, Macromol. Res., 13(4), 362 (2005)
  21. Ranjbar Z, Rastegar S, Prog. Org. Coat., 65, 125 (2009)
  22. Park SK, Kim JY, Cho WG, J. Soc. Cosmet. Scientists Korea., 20, 321 (2004)
  23. Yoon SB, Kim JY, Kim JH, Park YJ, Park SK, Yu JS, J. Mater. Chem., 17, 1758 (2007)
  24. Hofacker S, Mechtel M, Mager M, Kraus H, Prog. Org.Coat., 45, 159 (2002)
  25. Kciuk M, Kcuik S, Turczyn R, Journal of Achievements in Materials and Manufacturing Engineering., 33, 135 (2009)
  26. Lin L, Blackman GS, Matheson RR, Mater. Sci. Eng., A317, 163 (2001)
  27. Zhang H, Tang L, Zhang Z, Gu L, Xu Y, Eger C, Tribol.Int., 43, 83 (2010)