화학공학소재연구정보센터
Chemical Engineering Science, Vol.65, No.23, 6206-6214, 2010
A comparison of conventional and optimized thermally coupled reactors for Fischer-Tropsch synthesis in GTL technology
In this research, the conditions at which a thermally coupled reactor -containing the Fischer-Tropsch synthesis reactions and the dehydrogenation of cyclohexane - operates have been optimized using differential evolution ( DE) method. The proposed reactor is a heat exchanger reactor consists of two fixed bed of catalysts separated by the tube wall with the ability to transfer the produced heat from the exothermic side to the endothermic side. This system can perform the exothermic Fischer-Tropsch (F-T) reactions and the endothermic reaction of cyclohexane dehydrogenation to benzene simultaneously which can save energy and improve the reactions' thermal efficiency. The objective of the research is to optimize the operating conditions to maximize the gasoline (C-5(+)) production yield in the reactor's outlet as a desired product. The temperature distribution limit along the reactor to prevent the quick deactivation of the catalysts by sintering at both sides has been considered in the optimization process. The optimization results show a desirable progress compared with the conventional single stage reactor. Optimal inlet molar flow rate and inlet temperature of exothermic and endothermic sides and pressure of exothermic side have been calculated within the practicable range of temperature and pressure for both sides. (C). 2010 Elsevier Ltd. All rights reserved.