화학공학소재연구정보센터
Chemical Engineering Science, Vol.65, No.17, 4943-4954, 2010
Simultaneous robust data reconciliation and gross error detection through particle swarm optimiztion for an industrial polypropylene reactor
In a previous study, a nonlinear dynamic data reconciliation procedure (NDDR) based on the particle swarm optimization (PSO) method was developed and validated in line and in real time with actual industrial data obtained for an industrial polypropylene reactor (Prata et al., 2009, 2008b). The procedure is modified to allow for robust implementation of the NDRR problem with simultaneous gross errors are eliminated with the implementation of the Welsch robust estimator, avoiding the computation of biased estimates and implementation of iterative procedures for detection and removal industrial bult propylene polymerization process. A phenomenological model of the real process, based on the detailed mass and energy balances and constituted by a set of algebraic-differential equation, was implemented and used for interpretation of the actual plant behavior. The resulting nonlinear dynamic optimization problem was solved iteratively on a moving time window, in order to capture the current process behavior and allow for dynamic adaptation of model parameters. Results indicate that the proposed procedure, based on the combination of the PSO method and the robust Welsch estimator, can be implemented in real time in real industrial environments, allowing for the simultaneous detection of gross errors and estimation of process states and model parameter, leading to more robust and reproducible numerical performance. (C) 2010 Elsevier Ltd. All rights reserved.