화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.37, No.1, 275-283, 1998
Vapor pressure and boiling point elevation of slash pine black liquors : Predictive models with statistical approach
Vapor-liquid equilibria and boiling point elevation of slash pine kraft black liquors over a wide range of solid concentrations (up to 85% solids) has been studied. The liquors are from a statistically designed pulping experiment for pulping slash pine in a pilot scale digester with four cooking variables of effective alkali, sulfidity, cooking time, and cooking temperature. It was found that boiling point elevation of black liquors is pressure dependent, and this dependency is more significant at higher solids concentrations. The boiling point elevation data at different solids contents (at a fixed pressure) were correlated to the dissolved solids (S/(1 - S)) in black liquor. Due to the solubility limit of some of the salts in black liquor, a change in the slope of the boiling point elevation as a function of the dissolved solids was observed at a concentration of around 65% solids. An empirical method was developed to describe the boiling point elevation of each liquor as a function of pressure and solids mass fraction. The boiling point elevation of slash pine black liquors was correlated quantitatively to the pulping variables, using different statistical procedures. These predictive models can be applied to determine the boiling point rise (and boiling point) of slash pine black liquors at processing conditions from the knowledge of pulping variables. The results are presented, and their utility is discussed.