Biotechnology and Bioengineering, Vol.105, No.1, 184-194, 2010
Microfluidic Biochip for the Perifusion of Precision-Cut Rat Liver Slices for Metabolism and Toxicology Studies
Early detection of kinetic, metabolic, and toxicity (ADME-Tox) profiles for new drug candidates is of crucial importance during drug development. This article describes a novel in vitro system for the incubation of precision-cut liver slices (PCLS) under flow conditions, based on a poly(dimethylsiloxane) (PDMS) device containing 25-mu L microchambers for integration of the slices. The microdevice is coupled to a perifusion system, which enables a constant delivery of nutrients and oxygen and a continuous removal of waste products. Both a highly controlled incubation environment and high metabolite detection sensitivity could be achieved using microfluidics. Liver slices were viable for at least 24 h in the microdevice. The compound, 7-ethoxycoumarin (7-EC), was chosen to test metabolism, since its metabolism includes both phase I and phase 11 metabolism and when tested in the conventional well plate system, correlates well with the in vivo situation (De Kanter et al. 2004. Xenobiotica 34(3): 229-241.). The metabolic rate of 7-EC was found to be 214 +/- 5 pmol/min/mg protein in the microdevice, comparable to well plates, and was constant over time for at least 3 h. This perifusion system better mimics the in vivo situation, and has the potential to significantly contribute to drug metabolism and toxicology studies of novel chemical entities. Biotechnol. Bioeng. 2010;105: 184-194. (C) 2009 Wiley Periodicals, Inc.