- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.34, No.6, 588-593, November, 2010
실리콘, 게르마늄, 주석이 결합된 고굴절률 아크릴 고분자의 합성
Synthesis of Polyacrylates Containing Si, Ge and Sn for High Refractive Index
E-mail:
초록
실리콘, 게르마늄, 주석이 결합된 7개의 아크릴 단량체가 개발되었고 이를 광경화시킨 필름의 굴절률을 측정하였다. 공단량체로 가교도가 높은 triacrylate(Trimer)를 사용하여 형성된 공중합체의 굴절률로부터 단일중합체의 굴절률을 계산하였다. 공유 결합된 Ph3Si, Ph3Ge, Ph3Sn은 각각 아크릴 고분자 필름의 굴절률을 향상시키는데 기여하였고 주석이 게르마늄에 비해 약간 높은 기여도로 나타났다. 주석에 의한 굴절률 향상 효과는 Bu3Sn을 도입한 결과와 aliphatic acrylate의 비교로 보다 명확하게 입증되었다. 주석과 황의 안정된 결합을 이용하여 Ph3SnS가 도입된 아크릴 고분자의 굴절률은 589 nm에서 1.671로 높게 측정되었다. 측정 파장으로 656, 830, 1310, 1550 nm에서도 비슷한 굴절률이 관찰되었다.
New seven acrylic monomers with covalently bonded silicon, germanium, and tin were prepared
for high refractive index materials. The monomers were copolymerized with a cross-linkable comonomer (Trimer) to prepare UV-films for optical characterization. The refractive index of the copolymers increased in proportion to the monomer content and extrapolated to determine that of homopolymer. Ph3Si, Ph3Ge, and Ph3Sn groups contributed to increase the refractive index of acrylic polymer, in which Ph3Sn was more effective than Ph3Ge. The index increment confidently occurred with Bu3Sn attachment in comparison with aliphatic acrylic polymers. Ph3SnS-attached acrylate polymer showed a refractive index of 1.671 at 589 nm. The index change was similarly observed at various different wavelengths (656, 830, 1310, and 1550 nm).
Keywords:high refractive index;germanium and tin attached acrylate;Ph3SnS-acrylate;acrylic polymer film;UV-polymerization
- Chhabra P, Gupta R, Suri G, Tyagi M, Seshadri G, Sabharwal S, Niyogi UK, Khandal RK, International Journal of Polymer Science 2009 (2009), 906904, doi:10.1155/2009/906904.
- Polymer Blends Handbook, Utracki LA, Editor, Springer-Verlag, Vol. 1-2 (2002)
- Dai Q, Berman D, Virwani K, Frommer J, Jubert PO, Lam M, Topuria T, Imaino W, Nelson A, Nano Lett., 10, 3216 (2010)
- Flaim T, Wang Y, Mercado R, Proceedings of SPIE: Optical Systems Design, 5250, 423 (2003)
- Gonzalo J, Sanz O, Perea A, Fernandez-navarro JM, Afonso CN, Garcialopez J, Appl. Phys. A, 76, 943 (2003)
- Otsuka T, Chujo Y, Polym. J., 42, 58 (2010)
- Allcock RH, Bender JD, Chang Y, Chem. Mater., 15, 473 (2003)
- Shobha HK, Johnson H, Sankarapandian M, Kim YS, Rangarajan P, Baird DG, McGrath JE, J. Polym. Sci. A: Polym. Chem., 39(17), 2904 (2001)
- Groh W, Zimmermann A, Macromolecules, 24, 6660 (1991)
- Liang J, Toussaere E, Hierle R, Levenson R, Zyss J, Ochs AV, Rousseau A, Boutevin B, Opt. Mater., 9, 230 (1998)
- Nebioglu A, Leon JA, Khudyakov IV, Ind. Eng. Chem. Res., 47(7), 2155 (2008)
- Mandolesi SD, Koll LC, Chopa AB, Podesta JC, J. Organomet. Chem., 555, 151 (1998)
- Maheswara M, Kim M, Yun SJ, Ju JJ, Do JY, Tetrahedron Lett., 50, 480 (2009)
- Moon JH, Shul YG, Han HS, Hong SY, Choi YS, Kim HT, Int. J. Adhes. Adhes., 25, 301 (2005)
- Kwon JY, Kim BG, Do JY, Ju JJ, Park SK, Macromol. Res., 15(6), 533 (2007)
- Ishigure T, Tanaka S, Kobayashi E, Koik Y, Journal of Lightwave Technology, 20, 1449 (2002)
- Zhou M, Optical Engineering, 41, 1631 (2002)
- Ju JJ, Kim J, Do JY, Kim M, Park SK, Park S, Lee MH, Optics Letters, 29, 89 (2004)
- Teng CC, Appl. Opt., 32, 1051 (1993)