화학공학소재연구정보센터
Polymer(Korea), Vol.34, No.6, 547-552, November, 2010
고분자량 생분해성 폴리옥살레이트의 합성과 특성분석
Synthesis and Characterization of High Molecular Weight Biodegradable Polyoxalate
E-mail:
초록
생분해성 고분자는 제약 및 생명공학 분야에서 많은 관심을 받고 있는 물질로 특히 나노미립구의 형태로 약물전달체의 개발에 널리 이용되고 있다. 본 연구에서는 cyclohexanedimethanol과 oxalyl chloride를 pyridine의 존재 하에서 반응하여 고분자량의 생분해성 퍼옥살레이트 고분자를 합성하고 그 물리화학적 및 생물학적 특성을 조사하였다. 폴리옥살레이트는 분자량이 약 75000 Da 정도인 반결정성 고분자이며 물에서 가수분해가 일어남을 GPC와 NMR로 확인하였다. 소수성의 폴리옥살레이트는 단일유화법으로 나노미립구로 제조될 수 있으며 약물을 포접할 수 있고 아주 우수한 세포안정성을 가졌다. 용이한 합성과 우수한 물리화학적 및 생물학적 특성을 바탕으로 폴리옥살레이트 나노미립구는 약물전달체 개발에 아주 높은 잠재력이 있음을 확인하였다.
Biodegradable polymers have gained enormous attentions in the pharmaceutical and biomedical applications, especially in drug delivery. In this work, we report the synthesis and characteristics of high molecular weight polyoxalate with ∼75000 Da. Hydrolytic degradation kinetics and degradation products were characterized by nuclear magnetic resonance and gel permeation chromatography. Polyoxalate is a semicrystalline and thermally stable polymer with a glass transition temperature of ∼35 ℃, which is suitable for drug delivery applications. The hydrophobic nature of polyoxalate allows it to be formulated into nanoparticles and encapsulate drugs using a conventional oil-in-water emulsion/solvent displacement method. Polyoxalate nanoparticles also exhibited excellent cytotoxicity profiles. It can be suggested that polyoxalate has great potential for numerous biomedical and pharmaceutical applications.
  1. Criscione JM, Le BL, Stern E, Brennan M, Rahner C, Papademetris X, Fahmy TM, Biomaterials, 30, 3946 (2009)
  2. Brannonpeppas L, Int. J. Pharm., 116, 1 (1995)
  3. Heffernan MJ, Murthy N, Bioconjug. Chem., 16, 1340 (2005)
  4. Kluin OS, van der Mei HC, Busscher HJ, Neut D, Biomaterials, 30, 4738 (2009)
  5. Kim MS, Seo KS, Khang G, Cho SH, Lee HB, J. Biomed. Mater. Res. Part A, 70A, 154 (2004)
  6. Mi FL, Shyu SS, Lin YM, Wu YB, Peng CK, Tsai YH, Biomaterials, 24, 5023 (2003)
  7. Mi FL, Lin YM, Wu YB, Shyu SS, Tsai YH, Biomaterials, 23, 3257 (2002)
  8. Kim BS, Oh JM, Kim KS, Seo KS, Cho JS, Khang G, Lee HB, Park K, Kim MS, Biomaterials, 30, 902 (2009)
  9. Yang SC, Bhide M, Crispe IN, Pierce RH, Murthy N, Bioconjug. Chem., 19, 1164 (2008)
  10. Kim S, Seong K, Kim O, Kim S, Seo H, Lee M, Khang G, Lee D, Biomacromolecules, 11(3), 555 (2010)
  11. Holland SJ, Tighe BJ, Gould PL, J. Control. Release, 4, 155 (1986)
  12. Lee S, Yang SC, Heffernan MJ, Taylor WR, Murthy N, Bioconjug. Chem., 18, 4 (2007)
  13. Rauhut MM, Acc. Chem. Res., 2, 80 (1969)
  14. Hadd AG, Lehmpuhl DW, Kuck LR, Birks JW, Journal of Chemical Education, 76, 1237 (1999)
  15. Shalaby SW, Jamiolkowski DD, U.S. Patent 4,130,639 (1978)
  16. Grayson ACR, Voskerician G, Lynn A, Anderson JM, Cima MJ, Langer R, J. Biomater. Sci.-Polym. Ed., 15, 1281 (2004)
  17. Yoo JY, Kim JM, Seo KS, Jeong YK, Lee HB, Khang G, Bio-Med. Mater. Eng., 15, 279 (2005)