화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.6, 1760-1767, November, 2010
Optimization of methanol synthesis reaction on Cu/ZnO/Al2O3/ZrO2 catalyst using genetic algorithm: Maximization of the synergetic effect by the optimal CO2 fraction
E-mail:
A kinetics model that takes the synergetic effect of carbon dioxide fraction on the methanol production rate into account is applied to the development of a mathematical model for the bench-scale reactor. A comparison between the simulation results and the experimental data corroborates the validity of the model. Several optimization strategies are suggested to maximize the methanol yield, among which the utilization of piecewise trajectories for wall temperature along the reactor axis as well as the optimal CO2 fraction at the inlet of the reactor is found to be the best strategy in the sense of methanol production per unit amount of the feed, in such a way that the optimization strategy considers the variation of the reaction temperature in the reactor and maximizes the synergetic effect on the production rate by the addition of carbon dioxide.
  1. Olah GA, Doggweiler H, Felberg JD, Frohlich S, Grdina MJ, Karpeles R, Keumi T, Inaba S, Ip WM, Lammerstsmak K, Salem G, Tabor DC, J. Am. Chem. Soc., 106, 2143 (1984)
  2. Olah GA, Angew. Chem. Int. Ed., 44, 2636 (2005)
  3. Prakash GKS, Smart MC, Wang QJ, Atti A, Pleynet V, Yang B, McGrath K, Olah GA, Narayanan SR, Chun W, Valdez T, Surampudi S, J. Fluorine Chem., 125, 1217 (2004)
  4. Lange JP, Catal. Today, 64(1-2), 3 (2001)
  5. Satterfield CN, Heterogeneous catalysis in industrial practice, McGraw-Hill, New York (1991)
  6. Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, J. Catal., 56, 407 (1979)
  7. Chinchen GC, Denny PS, Parger DG, Spenser MS, Whan DA, Appl. Catal., 30, 333 (1987)
  8. Denise B, Sneeden RPA, J. Mol. Catal., 17, 359 (1982)
  9. Klier K, Chatikavanij V, Herman RG, Simmons GW, J. Catal., 74, 343 (1982)
  10. Edwards JF, Schrader GL, J. Phys. Chem., 88, 5624 (1984)
  11. Coteron A, Hayhurst AN, Chem. Eng. Sci., 49(2), 209 (1994)
  12. McNeil MA, Schack CJ, Rinker RG, Appl. Catal., 50, 265 (1989)
  13. Lim HW, Park MJ, Kang SH, Chae HJ, Bae JW, Jun KW, Ind. Eng. Chem. Res., 48(23), 10448 (2009)
  14. Løvik I, Hillestad M, Hertzberg T, Comput. Chem. Eng., 22, S707 (1998)
  15. Kordabadi H, Jahanmiri A, Chem. Eng. J., 108(3), 249 (2005)
  16. Rahimpour MR, Lotfinejad M, Chem. Eng. Technol., 30(8), 1062 (2007)
  17. Rahimpour MR, Behjati HE, Fuel Process. Technol., 90(2), 279 (2009)
  18. Graaf GH, Sijtsema PJJM, Stamhuis EJ, Joosten GEH, Chem. Eng. Sci., 41, 2883 (1986)
  19. Mizsey P, Newson E, Truong TB, Hottinger P, Appl. Catal. A: Gen., 213(2), 233 (2001)
  20. Ng KL, Chadwick D, Toseland BA, Chem. Eng. Sci., 54(15-16), 3587 (1999)
  21. Kordabadi H, Jahanmiri A, Chem. Eng. Process., 46(12), 1299 (2007)
  22. Chae HJ, Choo ST, Choi H, Nam IS, Yang HS, Song SL, Ind. Eng. Chem. Res., 39(5), 1159 (2000)
  23. Chilton TH, Colburn AP, Ind. Eng. Chem., 26, 1183 (1934)
  24. Perry RH, Green DW, Perry’s Chemical Engineers’ Handbook, McGraw-Hill, New York (1997)
  25. Lommerts BJ, Graaf GH, Beenackers AACM, Chem. Eng. Sci., 55(23), 5589 (2000)
  26. Suwanwarangkul R, Croiset E, Fowler MW, Douglas PL, Entchev E, Douglas MA, J. Power Sources, 112, 9 (2003)
  27. Fuller EN, Schettler PD, Gidding JC, Ind. Eng. Chem., 58, 19 (1966)
  28. Westerterp KR, Van Swaaij WPM, Beenackers AACM, Chemical reactor design and operation, Wiley, Chichester (1987)
  29. Goldberg DE, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading (1989)