화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.398, No.4, 713-718, 2010
Down-regulation of secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1), an endogenous allosteric alpha 7 nicotinic acetylcholine receptor modulator, in murine and human asthmatic conditions
Whereas acetylcholine (ACh) acts as a bronchoconstrictor and stimulator of mucus secretion from bronchial epithelium, it acts via alpha 7 nicotinic Ach receptors (nAChRs) on macrophages in the airways to exert anti-inflammatory effects by reducing synthesis of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha). Moreover, the effects of ACh are modified by secreted ly-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1), a positive allosteric modulator of alpha 7 nAChR signaling. Our aim was to explore the roles played by SLURP-1 in the pathophysiology of asthma by assessing SLURP-1 expression in the OVA-sensitized murine asthma model and in cultured human bronchial epithelial cells. Using real-time PCR we found that expression of SLURP-1 mRNA is down-regulated in the lungs of asthmatic model mice, as compared to healthy mice. In addition, immunohistochemical studies confirmed the diminished expression of SLURP-1 in the bronchioles of asthmatic mice, and showed it was due to extensive metaplasia of mucus-secreting cells and the concomitant loss of ciliated epithelial cells. Expression of SLURP-1 mRNA and protein was also significantly down-regulated in human epithelial cells stimulated with the pro-inflammatory cytokine interleukin-13 (IL-13), which is related to asthmatic condition. Thus SLURP-1 appears to be down-regulated in both an animal model of asthma and human epithelial cells treated with an inflammatory cytokine related to asthma. Those findings suggest that diminished expression of SLURP-1 in asthma attenuates its negative regulation of airway inflammation, and that perhaps changes in SLURP-1 expression could serve as a marker of airway damage in asthma. (c) 2010 Elsevier Inc. All rights reserved,